Elia Bosch-Rué, Qiao Zhang, George A Truskey, Jenifer Olmos Buitrago, Begoña M Bosch, Román A Pérez
{"title":"Development of small tissue engineered blood vessels and their clinical and research applications.","authors":"Elia Bosch-Rué, Qiao Zhang, George A Truskey, Jenifer Olmos Buitrago, Begoña M Bosch, Román A Pérez","doi":"10.1088/1758-5090/add626","DOIUrl":null,"url":null,"abstract":"<p><p>Since the first tissue engineered blood vessel (TEBV) was developed, different approaches, biomaterial scaffolds and cell sources have been used to obtain an engineered vessel as much similar as native vessels in terms of structure, functionality and mechanical properties. At the same time, diverse needs to obtain a functional TEBV have emerged, such as for blood vessel replacement for cardiovascular diseases (CVDs) to be used as artery bypass, to vascularize tissue engineered constructs, or even to model vascular diseases or drug testing. In this review, after briefly describing the native structure and function of arteries, we will give an overview of different biomaterials, cells and methods that have been used during the last years for the development of small TEBV (1-6 mm diameter). The importance of perfusing the TEBV to acquire functionality and maturation will be also discussed. Finally, we will center the review on TEBV applications beyond their use as vascular graft for CVDs.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/add626","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Since the first tissue engineered blood vessel (TEBV) was developed, different approaches, biomaterial scaffolds and cell sources have been used to obtain an engineered vessel as much similar as native vessels in terms of structure, functionality and mechanical properties. At the same time, diverse needs to obtain a functional TEBV have emerged, such as for blood vessel replacement for cardiovascular diseases (CVDs) to be used as artery bypass, to vascularize tissue engineered constructs, or even to model vascular diseases or drug testing. In this review, after briefly describing the native structure and function of arteries, we will give an overview of different biomaterials, cells and methods that have been used during the last years for the development of small TEBV (1-6 mm diameter). The importance of perfusing the TEBV to acquire functionality and maturation will be also discussed. Finally, we will center the review on TEBV applications beyond their use as vascular graft for CVDs.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).