José Guilherme Neves, Walleska Feijó Liberato, Odair Bim-Junior, Shu-Xi Jing, Shao-Nong Chen, Guido F Pauli, Ana K Bedran-Russo
{"title":"Optimization of dental adhesive interfaces using tissue biomodulation with DESIGNER biopolymers.","authors":"José Guilherme Neves, Walleska Feijó Liberato, Odair Bim-Junior, Shu-Xi Jing, Shao-Nong Chen, Guido F Pauli, Ana K Bedran-Russo","doi":"10.1016/j.dental.2025.03.020","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the modulatory effects of four proanthocyanidin-DESIGNERS (PAC-DESIGNERs) on the long-term bond strength of the resin-adhesive interface, the degree of conversion of resin monomers, the chemical-mechanical properties of dentin matrix, and cell biocompatibility.</p><p><strong>Methods: </strong>Standardized formulations of PACs with a dominant degree of polymerization - DP (trimers: PM-AB and CV-AB; tetramers: PM-ABA and CV-ABB) were prepared from two sources of AB-Type PACs using a DESIGNER approach. Resin-dentin interface was assessed after 24 hours and 1 year using a microtensile bond strength (µTBS) test. The degree of conversion (DC) of resin monomers and chemical analysis of the dentin matrix were analyzed by ATR-FTIR spectroscopy. The viscoelastic properties of the dentin matrix were assessed by dynamic mechanical analysis (DMA). Cell viability was analyzed using a 3D cell culture model. Data analysis using two- and one-way ANOVA and post-hoc tests (α = 0.05).</p><p><strong>Results: </strong>All PAC-DESIGNER biomodulation increased the µTBS when compared to control (p < 0.05), regardless of source, DP, and aging. The DC of resin adhesive was not negatively impacted, and an increase in DC was observed with the incorporation of PM-AB and PM-ABA DESIGNERs (p < 0.05). PAC-DESIGNER treatment also increased the dentin matrix complex modulus (153-79 MPa) and storage modulus (151-78 MPa) when compared to control (∼9 MPa, p < 0.05). All DESIGNERs decreased the intensity of amide II/CH<sub>2</sub> ratio; a decrease in the amide III/CH<sub>2</sub> ratio was observed for CV-ABB (p < 0.05). Moreover, PAC-DESIGNERs exhibited good cell biocompatibility and healthy cell morphology.</p><p><strong>Significance: </strong>All PAC-DESIGNERs optimized the dentin-resin µTBS. The different molecular structures played a modulatory role in the chemical-mechanical properties of the dentin matrix, the degree of conversion of adhesive, and cell biocompatibility.</p>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.dental.2025.03.020","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To investigate the modulatory effects of four proanthocyanidin-DESIGNERS (PAC-DESIGNERs) on the long-term bond strength of the resin-adhesive interface, the degree of conversion of resin monomers, the chemical-mechanical properties of dentin matrix, and cell biocompatibility.
Methods: Standardized formulations of PACs with a dominant degree of polymerization - DP (trimers: PM-AB and CV-AB; tetramers: PM-ABA and CV-ABB) were prepared from two sources of AB-Type PACs using a DESIGNER approach. Resin-dentin interface was assessed after 24 hours and 1 year using a microtensile bond strength (µTBS) test. The degree of conversion (DC) of resin monomers and chemical analysis of the dentin matrix were analyzed by ATR-FTIR spectroscopy. The viscoelastic properties of the dentin matrix were assessed by dynamic mechanical analysis (DMA). Cell viability was analyzed using a 3D cell culture model. Data analysis using two- and one-way ANOVA and post-hoc tests (α = 0.05).
Results: All PAC-DESIGNER biomodulation increased the µTBS when compared to control (p < 0.05), regardless of source, DP, and aging. The DC of resin adhesive was not negatively impacted, and an increase in DC was observed with the incorporation of PM-AB and PM-ABA DESIGNERs (p < 0.05). PAC-DESIGNER treatment also increased the dentin matrix complex modulus (153-79 MPa) and storage modulus (151-78 MPa) when compared to control (∼9 MPa, p < 0.05). All DESIGNERs decreased the intensity of amide II/CH2 ratio; a decrease in the amide III/CH2 ratio was observed for CV-ABB (p < 0.05). Moreover, PAC-DESIGNERs exhibited good cell biocompatibility and healthy cell morphology.
Significance: All PAC-DESIGNERs optimized the dentin-resin µTBS. The different molecular structures played a modulatory role in the chemical-mechanical properties of the dentin matrix, the degree of conversion of adhesive, and cell biocompatibility.
期刊介绍:
Dental Materials publishes original research, review articles, and short communications.
Academy of Dental Materials members click here to register for free access to Dental Materials online.
The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology.
Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.