Karolina Bejm, Stanislaw Wojtkiewicz, Zanna Pastuszak, Adam Liebert
{"title":"Oxygen-dependent functional brain haemodynamic response.","authors":"Karolina Bejm, Stanislaw Wojtkiewicz, Zanna Pastuszak, Adam Liebert","doi":"10.1364/BOE.545722","DOIUrl":null,"url":null,"abstract":"<p><p>The influence of hypoxia - a condition where tissues are under oxygen deficiency - on the human brain under functional load has not been fully understood yet. This study aims to analyse the effects of hypoxia on the brain's haemodynamic response under visual stimulation, using the in-house developed functional near-infrared spectroscopy system and to quantify the hemodynamic response. Our results (median, 25<sup>th</sup> and 75<sup>th</sup> percentile) demonstrate the amplitude of the oxygenated haemoglobin functional response during hypoxia 0.30 µM (0.27, 0.41) was lower compared with the normoxia 0.63 µM (0.54, 0.93) and hyperoxia 0.73 µM (0.43, 1.09). No statistical significance is observed for the deoxygenated haemoglobin changes. The hypoxia has a statistically significant effect on the amplitude of the haemodynamic response (p < 0.001).</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 4","pages":"1457-1470"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047717/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.545722","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of hypoxia - a condition where tissues are under oxygen deficiency - on the human brain under functional load has not been fully understood yet. This study aims to analyse the effects of hypoxia on the brain's haemodynamic response under visual stimulation, using the in-house developed functional near-infrared spectroscopy system and to quantify the hemodynamic response. Our results (median, 25th and 75th percentile) demonstrate the amplitude of the oxygenated haemoglobin functional response during hypoxia 0.30 µM (0.27, 0.41) was lower compared with the normoxia 0.63 µM (0.54, 0.93) and hyperoxia 0.73 µM (0.43, 1.09). No statistical significance is observed for the deoxygenated haemoglobin changes. The hypoxia has a statistically significant effect on the amplitude of the haemodynamic response (p < 0.001).
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.