Eetu Selenius, Chiara De Pasqual, Matleena Hänninen, Liisa Kartano, Sandra Winters, Johanna Mappes
{"title":"Ecological contexts shape sexual selection on male color morphs in wood tiger moths.","authors":"Eetu Selenius, Chiara De Pasqual, Matleena Hänninen, Liisa Kartano, Sandra Winters, Johanna Mappes","doi":"10.1093/beheco/araf027","DOIUrl":null,"url":null,"abstract":"<p><p>Color polymorphisms in natural populations often reflect the interplay between various selective pressures, such as natural and sexual selection. In this study, we investigate the dynamics of sexual selection operating on color polymorphism in wood tiger moths under different ecological contexts. Wood tiger moths exhibit polymorphism in male hindwing coloration, with individuals possessing one or two dominant W alleles displaying two forms of white coloration that differ in their UV reflectance (WW, Wy), while those with two recessive y alleles exhibit yellow coloration (yy). Females carry the color alleles, but do not express them phenotypically. We performed two mate choice experiments that simulated two ecological conditions: one with limited morph availability and low male encounter rates and the other with all morphs present and high potential for male encounters. We demonstrate that WW males experience higher overall mating success compared to yy males, irrespective of the presence of Wy males and male encounter rates. Surprisingly, mating with a WW male does not confer direct reproductive benefits to females in terms of lifetime reproductive success; instead, Wy females exhibit overall higher reproductive success regardless of their mating partner. Although the precise mechanism driving the higher mating success of WW males remains unclear, a temporal decline in mating success of WW males indicates potential differences in male mating strategies. Our findings suggest that despite the higher mating success of homozygote white males over homozygote yellow males, polymorphism likely persists due to the reproductive advantage of heterozygous individuals or other balancing selective forces.</p>","PeriodicalId":8840,"journal":{"name":"Behavioral Ecology","volume":"36 3","pages":"araf027"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035817/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/beheco/araf027","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Color polymorphisms in natural populations often reflect the interplay between various selective pressures, such as natural and sexual selection. In this study, we investigate the dynamics of sexual selection operating on color polymorphism in wood tiger moths under different ecological contexts. Wood tiger moths exhibit polymorphism in male hindwing coloration, with individuals possessing one or two dominant W alleles displaying two forms of white coloration that differ in their UV reflectance (WW, Wy), while those with two recessive y alleles exhibit yellow coloration (yy). Females carry the color alleles, but do not express them phenotypically. We performed two mate choice experiments that simulated two ecological conditions: one with limited morph availability and low male encounter rates and the other with all morphs present and high potential for male encounters. We demonstrate that WW males experience higher overall mating success compared to yy males, irrespective of the presence of Wy males and male encounter rates. Surprisingly, mating with a WW male does not confer direct reproductive benefits to females in terms of lifetime reproductive success; instead, Wy females exhibit overall higher reproductive success regardless of their mating partner. Although the precise mechanism driving the higher mating success of WW males remains unclear, a temporal decline in mating success of WW males indicates potential differences in male mating strategies. Our findings suggest that despite the higher mating success of homozygote white males over homozygote yellow males, polymorphism likely persists due to the reproductive advantage of heterozygous individuals or other balancing selective forces.
期刊介绍:
Studies on the whole range of behaving organisms, including plants, invertebrates, vertebrates, and humans, are included.
Behavioral Ecology construes the field in its broadest sense to include 1) the use of ecological and evolutionary processes to explain the occurrence and adaptive significance of behavior patterns; 2) the use of behavioral processes to predict ecological patterns, and 3) empirical, comparative analyses relating behavior to the environment in which it occurs.