Jia-Xuan Wang, Xin-Zhu Liu, Zhen Guo, Hui-Lin Zhang, Li Qi, Jia Liu, Ping Liu, Guo-Xiang Xie, Xiao-Ning Wang
{"title":"Differences in Fatty Acid Metabolism between MCDD and HFD Induced Metabolic Dysfunction-associated Fatty Liver Disease Model Mice.","authors":"Jia-Xuan Wang, Xin-Zhu Liu, Zhen Guo, Hui-Lin Zhang, Li Qi, Jia Liu, Ping Liu, Guo-Xiang Xie, Xiao-Ning Wang","doi":"10.1186/s12575-025-00276-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The global incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) is increasing annually, which has become a major public-health concern. MAFLD is typically associated with obesity, hyperlipemia, or metabolic syndrome. Dietary induction is one of the most common methods for preparing animal models of MAFLD. However, there are phenotypic differences between methionine-choline-deficient diet (MCDD) and high fat diet (HFD) models.</p><p><strong>Methods: </strong>To explore the differences in hepatic fatty acid metabolism between MCDD and HFD induced MAFLD, we analyzed serum and liver tissue from the two MAFLD models.</p><p><strong>Results: </strong>We found that liver fat accumulation and liver function damage were common pathological features in both MAFLD models. Furthermore, in the MCDD model, the expression of hepatic fatty acid transport proteins increased, while the expression of hepatic fatty acid efflux proteins and mRNA decreased, along with a decrease in blood lipid levels. In the HFD model, the expression of hepatic fatty acid uptake proteins, efflux proteins and efflux mRNA increased, along with an increase in blood lipid levels.</p><p><strong>Conclusion: </strong>Impaired fatty acid oxidation and increased hepatic fatty acid uptake play key roles in the pathogenesis of the two MAFLD models. The inverse changes in de novo lipogenesis and fatty acid efflux may represent an important pathological mechanism that leads to the phenotypic differences between the MCDD and HFD models.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"27 1","pages":"14"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11998272/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Procedures Online","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12575-025-00276-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The global incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) is increasing annually, which has become a major public-health concern. MAFLD is typically associated with obesity, hyperlipemia, or metabolic syndrome. Dietary induction is one of the most common methods for preparing animal models of MAFLD. However, there are phenotypic differences between methionine-choline-deficient diet (MCDD) and high fat diet (HFD) models.
Methods: To explore the differences in hepatic fatty acid metabolism between MCDD and HFD induced MAFLD, we analyzed serum and liver tissue from the two MAFLD models.
Results: We found that liver fat accumulation and liver function damage were common pathological features in both MAFLD models. Furthermore, in the MCDD model, the expression of hepatic fatty acid transport proteins increased, while the expression of hepatic fatty acid efflux proteins and mRNA decreased, along with a decrease in blood lipid levels. In the HFD model, the expression of hepatic fatty acid uptake proteins, efflux proteins and efflux mRNA increased, along with an increase in blood lipid levels.
Conclusion: Impaired fatty acid oxidation and increased hepatic fatty acid uptake play key roles in the pathogenesis of the two MAFLD models. The inverse changes in de novo lipogenesis and fatty acid efflux may represent an important pathological mechanism that leads to the phenotypic differences between the MCDD and HFD models.
期刊介绍:
iological Procedures Online publishes articles that improve access to techniques and methods in the medical and biological sciences.
We are also interested in short but important research discoveries, such as new animal disease models.
Topics of interest include, but are not limited to:
Reports of new research techniques and applications of existing techniques
Technical analyses of research techniques and published reports
Validity analyses of research methods and approaches to judging the validity of research reports
Application of common research methods
Reviews of existing techniques
Novel/important product information
Biological Procedures Online places emphasis on multidisciplinary approaches that integrate methodologies from medicine, biology, chemistry, imaging, engineering, bioinformatics, computer science, and systems analysis.