Global transcription machinery engineering in Yarrowia lipolytica.

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ewelina Celińska, Yongjin J Zhou
{"title":"Global transcription machinery engineering in Yarrowia lipolytica.","authors":"Ewelina Celińska, Yongjin J Zhou","doi":"10.1093/femsyr/foaf023","DOIUrl":null,"url":null,"abstract":"<p><p>Global transcription machinery engineering (gTME) is a strategy for optimizing complex phenotypes in microbes by manipulating transcription factors (TFs) and their downstream transcriptional regulatory networks (TRN). In principle, gTME leads to a focused but comprehensive optimization of a microbe, also enabling the engineering of nonpathway functionalities, like stress resistance, protein expression, or growth rate. A link between a TF and a desired phenotype is to be established for a rationally designed gTME. For use in a high-throughput format with extensive libraries of TRN-engineered clones tested under multiple conditions, well-developed culturing and analytical protocols are needed, to reveal the pleiotropic effects of the TFs. This mini-review summarizes the gTME strategies and TFs described under different contexts in Yarrowia lipolytica. The outcomes of the gTME strategy application are also addressed, demonstrating its effectiveness in engineering complex, industrially relevant traits in Y. lipolytica.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091107/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foaf023","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Global transcription machinery engineering (gTME) is a strategy for optimizing complex phenotypes in microbes by manipulating transcription factors (TFs) and their downstream transcriptional regulatory networks (TRN). In principle, gTME leads to a focused but comprehensive optimization of a microbe, also enabling the engineering of nonpathway functionalities, like stress resistance, protein expression, or growth rate. A link between a TF and a desired phenotype is to be established for a rationally designed gTME. For use in a high-throughput format with extensive libraries of TRN-engineered clones tested under multiple conditions, well-developed culturing and analytical protocols are needed, to reveal the pleiotropic effects of the TFs. This mini-review summarizes the gTME strategies and TFs described under different contexts in Yarrowia lipolytica. The outcomes of the gTME strategy application are also addressed, demonstrating its effectiveness in engineering complex, industrially relevant traits in Y. lipolytica.

脂性耶氏菌的全球转录机械工程。
全球转录机械工程(gTME)是一种通过调控转录因子(tf)及其下游转录调控网络(TRN)来优化微生物复杂表型的策略。原则上,gTME可以对微生物进行集中而全面的优化,也可以实现非途径功能的工程设计,如抗逆性、蛋白质表达或生长速度。对于合理设计的gTME,将建立TF与期望表型之间的联系。为了以高通量格式使用在多种条件下测试的大量trn工程克隆库,需要完善的培养和分析方案,以揭示tf的多效性效应。本文综述了脂性耶氏菌在不同情况下的gTME策略和TFs。gTME策略应用的结果也得到了解决,证明了它在工程复杂,工业相关性状的脂质体的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信