Fei Cun, Jie Chen, Hanxue Li, Yufang Kou, Meiyan Wang, Xiaomin Li, Hui Chen, Jilie Kong
{"title":"Mesoporous Gold Nanospheres Confined Platinum Nanoclusters as Robust ROS and Oxygen Nanogenerators for NIR-II Hyperthermia Cancer Therapy.","authors":"Fei Cun, Jie Chen, Hanxue Li, Yufang Kou, Meiyan Wang, Xiaomin Li, Hui Chen, Jilie Kong","doi":"10.1002/advs.202502688","DOIUrl":null,"url":null,"abstract":"<p><p>While massive studies are focused on platinum (Pt)-based nanozyme for antitumor therapies, their therapeutic efficiency is deficient due to the weak catalytic activity in the highly complex tumor microenvironment. Herein, mesoporous gold nanospheres confined platinum nanoclusters (MGNSs@Pt) as robust hydroxyl radical and oxygen nanogenerators are achieved for multimodal therapies. Benefiting from the confinement effect of the mesopores in the MGNSs, the Pt nanoclusters (Pt NCs) demonstrate enhanced stability and catalytic activity, with a catalytic constant (K<sub>cat</sub>) of 1.42 × 10<sup>6</sup> s<sup>-1</sup>, which is 2 and 5 orders magnitude higher than K<sub>cat</sub> values of Pt-decorated non-porous gold nanoparticles and pure Pt NCs respectively. Density functional theory (DFT) calculations reveal the proper interaction of intermediates contributes to the ultra-high catalytic activity of MGNSs@Pt. Meanwhile, owing to the local surface plasmon resonance (LSPR) effect in the second near-infrared (NIR-II) bio-window of MGNSs, the nanozymes exhibited high photothermal conversion efficiency up to 43.4%, which enhanced the nanocatalytic damage on cancer cells. This process can induce robust oxidative stress and oxygenation within the tumor, thereby activating the apoptosis pathway for tumor eradication by mitochondrial dysfunction, cell membrane disruption, HIF-1α downregulation as well as caspase 3 activation, which pave the way for multimodal and effective cancer treatment.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2502688"},"PeriodicalIF":14.3000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202502688","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
While massive studies are focused on platinum (Pt)-based nanozyme for antitumor therapies, their therapeutic efficiency is deficient due to the weak catalytic activity in the highly complex tumor microenvironment. Herein, mesoporous gold nanospheres confined platinum nanoclusters (MGNSs@Pt) as robust hydroxyl radical and oxygen nanogenerators are achieved for multimodal therapies. Benefiting from the confinement effect of the mesopores in the MGNSs, the Pt nanoclusters (Pt NCs) demonstrate enhanced stability and catalytic activity, with a catalytic constant (Kcat) of 1.42 × 106 s-1, which is 2 and 5 orders magnitude higher than Kcat values of Pt-decorated non-porous gold nanoparticles and pure Pt NCs respectively. Density functional theory (DFT) calculations reveal the proper interaction of intermediates contributes to the ultra-high catalytic activity of MGNSs@Pt. Meanwhile, owing to the local surface plasmon resonance (LSPR) effect in the second near-infrared (NIR-II) bio-window of MGNSs, the nanozymes exhibited high photothermal conversion efficiency up to 43.4%, which enhanced the nanocatalytic damage on cancer cells. This process can induce robust oxidative stress and oxygenation within the tumor, thereby activating the apoptosis pathway for tumor eradication by mitochondrial dysfunction, cell membrane disruption, HIF-1α downregulation as well as caspase 3 activation, which pave the way for multimodal and effective cancer treatment.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.