{"title":"Engineering RiPP pathways: strategies for generating complex bioactive peptides.","authors":"Ayoola B Smith, Renee C Ejindu, Jonathan R Chekan","doi":"10.1016/j.tibs.2025.04.001","DOIUrl":null,"url":null,"abstract":"<p><p>Historically, natural products have been essential sources of therapeutic agents, many of which are currently used to manage various diseases. In recent years, ribosomally synthesized and post-translationally modified peptides (RiPPs) have garnered considerable interest in drug discovery and development due to their biosynthetic plasticity and their ability to generate diverse bioactive structural scaffolds. Unfortunately, many RiPPs have suboptimal bioavailability and proteolytic stability, significantly limiting their clinical potential. Moreover, the complexity of RiPP structures makes total synthesis extremely difficult. These drawbacks necessitate pathway engineering to create derivatives with potentially optimized physicochemical properties. Herein, we review recent efforts to surmount pathway engineering challenges and to rationally modify components of RiPP pathways for new functions to derive new bioactive analogs.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":" ","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tibs.2025.04.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Historically, natural products have been essential sources of therapeutic agents, many of which are currently used to manage various diseases. In recent years, ribosomally synthesized and post-translationally modified peptides (RiPPs) have garnered considerable interest in drug discovery and development due to their biosynthetic plasticity and their ability to generate diverse bioactive structural scaffolds. Unfortunately, many RiPPs have suboptimal bioavailability and proteolytic stability, significantly limiting their clinical potential. Moreover, the complexity of RiPP structures makes total synthesis extremely difficult. These drawbacks necessitate pathway engineering to create derivatives with potentially optimized physicochemical properties. Herein, we review recent efforts to surmount pathway engineering challenges and to rationally modify components of RiPP pathways for new functions to derive new bioactive analogs.
期刊介绍:
For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.