Lyle Ijssel P De Guzman, Renato C Carpina, Joan Catherine A Chua, Eizadora T Yu
{"title":"Teredinibacter turnerae secretome highlights key enzymes for plant cell wall degradation.","authors":"Lyle Ijssel P De Guzman, Renato C Carpina, Joan Catherine A Chua, Eizadora T Yu","doi":"10.1186/s40643-025-00876-7","DOIUrl":null,"url":null,"abstract":"<p><p>Carbohydrate-active enzymes (CAZymes) are crucial in the sustainable production of fuels and raw materials from recalcitrant plant cell wall polysaccharides (PCWPs). Teredinibacter turnerae, a symbiont of wood-boring shipworms, is a prolific degrader of plant biomass, largely due to the extensive CAZyme repertoire in its genome. To identify key enzymes involved in PCWP utilization, we analyzed the secretomes of T. turnerae E7MBN strain grown on sucrose, major PCWPs (cellulose, xylan, and pectin), and residual rice hull biomass using mass spectrometry-based proteomics. Our results show that T. turnerae E7MBN exhibits minimal enzyme secretion across various carbon sources, where secretomes mostly display similar functional profiles. Enzymatic complexity varied with the substrate, with cellulose-grown secretome being the most complex and comprising the majority of secreted CAZymes. These CAZymes contain domains that primarily target cellulose, hemicellulose, or pectin, notably including multicatalytic enzymes that are consistently found in the secretome and are likely central to biomass degradation. In contrast, the xylan-grown secretome displayed a more specific response, secreting only a single bifunctional hemicellulase, E7_MBN_00081, also identified as a core component of the bacteria's enzymatic repertoire. Meanwhile, the pectin-grown secretome consists of multiple tonB-dependent receptors, which, along with isomerases, are considered common secretome constituents. E7MBN also demonstrated the capability to utilize rice hull biomass, predominantly secreting proteins previously identified under cellulose. Protein-protein interaction network analysis further revealed functional associations between CAZymes and several uncharacterized proteins, which include CBM-containing redox enzymes and a putative xylan-acting protein, thus offering new insights into their potential role in lignocellulose degradation. Overall, our work contributes to our understanding of enzymatic strategies employed by T. turnerae for PCWP deconstruction and highlights its potential as a promising source of CAZymes for sustainable biomass conversion.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"42"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055684/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-025-00876-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbohydrate-active enzymes (CAZymes) are crucial in the sustainable production of fuels and raw materials from recalcitrant plant cell wall polysaccharides (PCWPs). Teredinibacter turnerae, a symbiont of wood-boring shipworms, is a prolific degrader of plant biomass, largely due to the extensive CAZyme repertoire in its genome. To identify key enzymes involved in PCWP utilization, we analyzed the secretomes of T. turnerae E7MBN strain grown on sucrose, major PCWPs (cellulose, xylan, and pectin), and residual rice hull biomass using mass spectrometry-based proteomics. Our results show that T. turnerae E7MBN exhibits minimal enzyme secretion across various carbon sources, where secretomes mostly display similar functional profiles. Enzymatic complexity varied with the substrate, with cellulose-grown secretome being the most complex and comprising the majority of secreted CAZymes. These CAZymes contain domains that primarily target cellulose, hemicellulose, or pectin, notably including multicatalytic enzymes that are consistently found in the secretome and are likely central to biomass degradation. In contrast, the xylan-grown secretome displayed a more specific response, secreting only a single bifunctional hemicellulase, E7_MBN_00081, also identified as a core component of the bacteria's enzymatic repertoire. Meanwhile, the pectin-grown secretome consists of multiple tonB-dependent receptors, which, along with isomerases, are considered common secretome constituents. E7MBN also demonstrated the capability to utilize rice hull biomass, predominantly secreting proteins previously identified under cellulose. Protein-protein interaction network analysis further revealed functional associations between CAZymes and several uncharacterized proteins, which include CBM-containing redox enzymes and a putative xylan-acting protein, thus offering new insights into their potential role in lignocellulose degradation. Overall, our work contributes to our understanding of enzymatic strategies employed by T. turnerae for PCWP deconstruction and highlights its potential as a promising source of CAZymes for sustainable biomass conversion.
期刊介绍:
Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology