Further Exploration of an Upper Bound for Kemeny's Constant.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-04-04 DOI:10.3390/e27040384
Robert E Kooij, Johan L A Dubbeldam
{"title":"Further Exploration of an Upper Bound for Kemeny's Constant.","authors":"Robert E Kooij, Johan L A Dubbeldam","doi":"10.3390/e27040384","DOIUrl":null,"url":null,"abstract":"<p><p>Even though Kemeny's constant was first discovered in Markov chains and expressed by Kemeny in terms of mean first passage times on a graph, it can also be expressed using the pseudo-inverse of the Laplacian matrix representing the graph, which facilitates the calculation of a sharp upper bound of Kemeny's constant. We show that for certain classes of graphs, a previously found bound is tight, which generalises previous results for bipartite and (generalised) windmill graphs. Moreover, we show numerically that for real-world networks, this bound can be used to find good numerical approximations for Kemeny's constant. For certain graphs consisting of up to 100 K nodes, we find a speedup of a factor 30, depending on the accuracy of the approximation that can be achieved. For networks consisting of over 500 K nodes, the approximation can be used to estimate values for the Kemeny constant, where exact calculation is no longer feasible within reasonable computation time.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025856/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040384","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Even though Kemeny's constant was first discovered in Markov chains and expressed by Kemeny in terms of mean first passage times on a graph, it can also be expressed using the pseudo-inverse of the Laplacian matrix representing the graph, which facilitates the calculation of a sharp upper bound of Kemeny's constant. We show that for certain classes of graphs, a previously found bound is tight, which generalises previous results for bipartite and (generalised) windmill graphs. Moreover, we show numerically that for real-world networks, this bound can be used to find good numerical approximations for Kemeny's constant. For certain graphs consisting of up to 100 K nodes, we find a speedup of a factor 30, depending on the accuracy of the approximation that can be achieved. For networks consisting of over 500 K nodes, the approximation can be used to estimate values for the Kemeny constant, where exact calculation is no longer feasible within reasonable computation time.

凯梅尼常数上界的进一步探讨。
尽管Kemeny常数最初是在马尔可夫链中发现的,并由Kemeny用图上的平均首次通过时间来表示,但它也可以用表示图的拉普拉斯矩阵的伪逆来表示,这便于计算Kemeny常数的明显上界。我们证明了对于某些图类,先前发现的界是紧的,它推广了先前关于二部图和(广义)风车图的结果。此外,我们在数值上表明,对于现实世界的网络,这个界可以用来找到Kemeny常数的良好数值近似。对于由多达100 K个节点组成的某些图,我们发现加速系数为30,这取决于可以实现的近似值的准确性。对于由超过500k个节点组成的网络,可以使用近似值来估计Kemeny常数的值,在合理的计算时间内,精确的计算不再可行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信