{"title":"Further Exploration of an Upper Bound for Kemeny's Constant.","authors":"Robert E Kooij, Johan L A Dubbeldam","doi":"10.3390/e27040384","DOIUrl":null,"url":null,"abstract":"<p><p>Even though Kemeny's constant was first discovered in Markov chains and expressed by Kemeny in terms of mean first passage times on a graph, it can also be expressed using the pseudo-inverse of the Laplacian matrix representing the graph, which facilitates the calculation of a sharp upper bound of Kemeny's constant. We show that for certain classes of graphs, a previously found bound is tight, which generalises previous results for bipartite and (generalised) windmill graphs. Moreover, we show numerically that for real-world networks, this bound can be used to find good numerical approximations for Kemeny's constant. For certain graphs consisting of up to 100 K nodes, we find a speedup of a factor 30, depending on the accuracy of the approximation that can be achieved. For networks consisting of over 500 K nodes, the approximation can be used to estimate values for the Kemeny constant, where exact calculation is no longer feasible within reasonable computation time.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025856/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040384","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Even though Kemeny's constant was first discovered in Markov chains and expressed by Kemeny in terms of mean first passage times on a graph, it can also be expressed using the pseudo-inverse of the Laplacian matrix representing the graph, which facilitates the calculation of a sharp upper bound of Kemeny's constant. We show that for certain classes of graphs, a previously found bound is tight, which generalises previous results for bipartite and (generalised) windmill graphs. Moreover, we show numerically that for real-world networks, this bound can be used to find good numerical approximations for Kemeny's constant. For certain graphs consisting of up to 100 K nodes, we find a speedup of a factor 30, depending on the accuracy of the approximation that can be achieved. For networks consisting of over 500 K nodes, the approximation can be used to estimate values for the Kemeny constant, where exact calculation is no longer feasible within reasonable computation time.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.