Retina-Inspired Models Enhance Visual Saliency Prediction.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-04-18 DOI:10.3390/e27040436
Gang Shen, Wenjun Ma, Wen Zhai, Xuefei Lv, Guangyao Chen, Yonghong Tian
{"title":"Retina-Inspired Models Enhance Visual Saliency Prediction.","authors":"Gang Shen, Wenjun Ma, Wen Zhai, Xuefei Lv, Guangyao Chen, Yonghong Tian","doi":"10.3390/e27040436","DOIUrl":null,"url":null,"abstract":"<p><p>Biologically inspired retinal preprocessing improves visual perception by efficiently encoding and reducing entropy in images. In this study, we introduce a new saliency prediction framework that combines a retinal model with deep neural networks (DNNs) using information theory ideas. By mimicking the human retina, our method creates clearer saliency maps with lower entropy and supports efficient computation with DNNs by optimizing information flow and reducing redundancy. We treat saliency prediction as an information maximization problem, where important regions have high information and low local entropy. Tests on several benchmark datasets show that adding the retinal model boosts the performance of various bottom-up saliency prediction methods by better managing information and reducing uncertainty. We use metrics like mutual information and entropy to measure improvements in accuracy and efficiency. Our framework outperforms state-of-the-art models, producing saliency maps that closely match where people actually look. By combining neurobiological insights with information theory-using measures like Kullback-Leibler divergence and information gain-our method not only improves prediction accuracy but also offers a clear, quantitative understanding of saliency. This approach shows promise for future research that brings together neuroscience, entropy, and deep learning to enhance visual saliency prediction.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026020/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040436","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biologically inspired retinal preprocessing improves visual perception by efficiently encoding and reducing entropy in images. In this study, we introduce a new saliency prediction framework that combines a retinal model with deep neural networks (DNNs) using information theory ideas. By mimicking the human retina, our method creates clearer saliency maps with lower entropy and supports efficient computation with DNNs by optimizing information flow and reducing redundancy. We treat saliency prediction as an information maximization problem, where important regions have high information and low local entropy. Tests on several benchmark datasets show that adding the retinal model boosts the performance of various bottom-up saliency prediction methods by better managing information and reducing uncertainty. We use metrics like mutual information and entropy to measure improvements in accuracy and efficiency. Our framework outperforms state-of-the-art models, producing saliency maps that closely match where people actually look. By combining neurobiological insights with information theory-using measures like Kullback-Leibler divergence and information gain-our method not only improves prediction accuracy but also offers a clear, quantitative understanding of saliency. This approach shows promise for future research that brings together neuroscience, entropy, and deep learning to enhance visual saliency prediction.

视网膜启发模型增强视觉显著性预测。
受生物启发的视网膜预处理通过有效编码和减少图像中的熵来改善视觉感知。在这项研究中,我们引入了一个新的显著性预测框架,该框架将视网膜模型与使用信息论思想的深度神经网络(dnn)相结合。通过模拟人类视网膜,我们的方法以更低的熵创建更清晰的显著性图,并通过优化信息流和减少冗余来支持dnn的高效计算。我们将显著性预测视为一个信息最大化问题,其中重要区域具有高信息和低局部熵。在多个基准数据集上的测试表明,加入视网膜模型可以通过更好地管理信息和减少不确定性来提高各种自下而上的显著性预测方法的性能。我们使用互信息和熵等指标来衡量准确性和效率的提高。我们的框架优于最先进的模型,生成的显著性地图与人们实际看到的地方非常接近。通过将神经生物学的见解与信息论相结合——使用像Kullback-Leibler散度和信息增益这样的测量方法——我们的方法不仅提高了预测的准确性,而且提供了对显著性的清晰、定量的理解。这种方法为未来的研究提供了希望,该研究将神经科学、熵和深度学习结合起来,以增强视觉显著性预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信