{"title":"Retina-Inspired Models Enhance Visual Saliency Prediction.","authors":"Gang Shen, Wenjun Ma, Wen Zhai, Xuefei Lv, Guangyao Chen, Yonghong Tian","doi":"10.3390/e27040436","DOIUrl":null,"url":null,"abstract":"<p><p>Biologically inspired retinal preprocessing improves visual perception by efficiently encoding and reducing entropy in images. In this study, we introduce a new saliency prediction framework that combines a retinal model with deep neural networks (DNNs) using information theory ideas. By mimicking the human retina, our method creates clearer saliency maps with lower entropy and supports efficient computation with DNNs by optimizing information flow and reducing redundancy. We treat saliency prediction as an information maximization problem, where important regions have high information and low local entropy. Tests on several benchmark datasets show that adding the retinal model boosts the performance of various bottom-up saliency prediction methods by better managing information and reducing uncertainty. We use metrics like mutual information and entropy to measure improvements in accuracy and efficiency. Our framework outperforms state-of-the-art models, producing saliency maps that closely match where people actually look. By combining neurobiological insights with information theory-using measures like Kullback-Leibler divergence and information gain-our method not only improves prediction accuracy but also offers a clear, quantitative understanding of saliency. This approach shows promise for future research that brings together neuroscience, entropy, and deep learning to enhance visual saliency prediction.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026020/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040436","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biologically inspired retinal preprocessing improves visual perception by efficiently encoding and reducing entropy in images. In this study, we introduce a new saliency prediction framework that combines a retinal model with deep neural networks (DNNs) using information theory ideas. By mimicking the human retina, our method creates clearer saliency maps with lower entropy and supports efficient computation with DNNs by optimizing information flow and reducing redundancy. We treat saliency prediction as an information maximization problem, where important regions have high information and low local entropy. Tests on several benchmark datasets show that adding the retinal model boosts the performance of various bottom-up saliency prediction methods by better managing information and reducing uncertainty. We use metrics like mutual information and entropy to measure improvements in accuracy and efficiency. Our framework outperforms state-of-the-art models, producing saliency maps that closely match where people actually look. By combining neurobiological insights with information theory-using measures like Kullback-Leibler divergence and information gain-our method not only improves prediction accuracy but also offers a clear, quantitative understanding of saliency. This approach shows promise for future research that brings together neuroscience, entropy, and deep learning to enhance visual saliency prediction.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.