A Family of Optimal Linear Functional-Repair Regenerating Storage Codes.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-04-01 DOI:10.3390/e27040376
Henk D L Hollmann
{"title":"A Family of Optimal Linear Functional-Repair Regenerating Storage Codes.","authors":"Henk D L Hollmann","doi":"10.3390/e27040376","DOIUrl":null,"url":null,"abstract":"<p><p>We construct a family of linear optimal functional-repair regenerating storage codes with parameters {m,(n,k),(r,α,β)}={(2r-α+1)α/2,(r+1,r),(r,α,1)} for any integers r,α with 1≤α≤r, over any field when α∈{1,r-1,r}, and over any finite field Fq with q≥r-1 otherwise. These storage codes are Minimum-Storage Regenerating (MSR) when α=1, Minimum-Bandwidth Regenerating (MBR) when α=r, and represents extremal points of the (convex) attainable cut-set region different from the MSR and MBR points in all other cases. It is known that when 2≤α≤r-1, these parameters cannot be realized by exact-repair storage codes. Each of these codes come with an explicit and relatively simple repair method, and repair can even be realized as help-by-transfer (HBT) if desired. The coding states of codes from this family can be described geometrically as configurations of r+1 subspaces of dimension α in an <i>m</i>-dimensional vector space with restricted sub-span dimensions. A few \"small\" codes with these parameters are known: one for (r,α)=(3,2) dating from 2013 and one for (r,α)=(4,3) dating from 2024. Apart from these, our codes are the first examples of explicit, relatively simple, optimal functional-repair storage codes over a small finite field, with an explicit repair method and with parameters representing an extremal point of the attainable cut-set region distinct from the MSR and MBR points.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025674/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040376","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a family of linear optimal functional-repair regenerating storage codes with parameters {m,(n,k),(r,α,β)}={(2r-α+1)α/2,(r+1,r),(r,α,1)} for any integers r,α with 1≤α≤r, over any field when α∈{1,r-1,r}, and over any finite field Fq with q≥r-1 otherwise. These storage codes are Minimum-Storage Regenerating (MSR) when α=1, Minimum-Bandwidth Regenerating (MBR) when α=r, and represents extremal points of the (convex) attainable cut-set region different from the MSR and MBR points in all other cases. It is known that when 2≤α≤r-1, these parameters cannot be realized by exact-repair storage codes. Each of these codes come with an explicit and relatively simple repair method, and repair can even be realized as help-by-transfer (HBT) if desired. The coding states of codes from this family can be described geometrically as configurations of r+1 subspaces of dimension α in an m-dimensional vector space with restricted sub-span dimensions. A few "small" codes with these parameters are known: one for (r,α)=(3,2) dating from 2013 and one for (r,α)=(4,3) dating from 2024. Apart from these, our codes are the first examples of explicit, relatively simple, optimal functional-repair storage codes over a small finite field, with an explicit repair method and with parameters representing an extremal point of the attainable cut-set region distinct from the MSR and MBR points.

一类最优线性功能修复再生存储代码。
对于任意整数r,α≤α≤r,当α∈{1,r-1,r}时,在任意域上,当α∈{1,r-1,r}时,在任意有限域Fq上,当q≥r-1时,构造了参数{m,(n,k),(r,α,β)}={(2r-α+1)α/2,(r+1,r),(r,α,1)}的线性最优功能修复再生存储码族。这些存储码分别是α=1时的最小存储再生码(Minimum-Storage regeneration, MSR)和α=r时的最小带宽再生码(Minimum-Bandwidth regeneration, MBR),它们表示与其他情况下的最小存储再生码和最小带宽再生码(Minimum-Bandwidth regeneration, MBR)不同的(凸)可达切集区域的极值点。已知当2≤α≤r-1时,这些参数无法通过精确修复存储代码实现。这些代码都带有明确且相对简单的修复方法,如果需要,甚至可以将修复作为传递帮助(HBT)来实现。该族码的编码状态可以用m维向量空间中具有受限子空间维数的r+1个α维子空间的构型来描述。一些带有这些参数的“小”代码是已知的:一个用于2013年的(r,α)=(3,2),一个用于2024年的(r,α)=(4,3)。除此之外,我们的代码是在一个小的有限域上明确的、相对简单的、最优的功能修复存储代码的第一个例子,具有明确的修复方法和参数,表示与MSR和MBR点不同的可达到的切割集区域的极值点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信