Max Denisson Maurı Cio Viana, Sthefane Silva Santos, Mariana Bastos de Souza, Luı Za Carolina França Opretzka, Dhara Leite Lopes, Milena Botelho Pereira Soares, Cristiane Flora Villarreal
{"title":"Lactobacillus acidophilus LA85 reverses experimental diabetic sensory neuropathy by restoring redox homeostasis in the spinal cord.","authors":"Max Denisson Maurı Cio Viana, Sthefane Silva Santos, Mariana Bastos de Souza, Luı Za Carolina França Opretzka, Dhara Leite Lopes, Milena Botelho Pereira Soares, Cristiane Flora Villarreal","doi":"10.1163/18762891-bja00069","DOIUrl":null,"url":null,"abstract":"<p><p>Lactobacillus acidophilus (LA) ingestion has been previously shown to be beneficial for glycemic control and pain management, but not in diabetic neuropathy (DN). The present work was designed to evaluate the therapeutic potential of daily treatment with Lactobacillus acidophilus LA85 (LA85) strain in a model of streptozotocin (STZ)-induced painful DN in mice and characterize its mechanisms of action. Male C57BL/6 mice received a daily intraperitoneal administration of STZ (60 mg/kg, 3 days). After the establishment of sensory neuropathy, mice were daily treated with LA85 (1.0 × 107 or 1.0 × 109 CFU), vehicle, or gabapentin (isolated or associated with LA85) for 28 days. Nociceptive thresholds were assessed using von Frey and Hargreaves tests. Motor performance was evaluated in the rota-rod test. Glycaemic measurement was determined before and after induction in four different times. Gene expression profile, cytokine levels, and oxidative stress biomarkers in the spinal cord were evaluated by real-time PCR, ELISA, and biochemical assays, respectively. STZ-induced mice showed persistent hyperglycaemia and compatible behavioural signs of sensory neuropathy, such as mechanical allodynia and thermal hypoalgesia. Treatment with LA85, especially at 1.0 × 109 CFU, significantly reduced the neuropathy signs. No LA85-induced motor impairment was evidenced in the rota-rod test. LA85 treatment reduced levels of interleukin-1β, malondialdehyde, and nitrite, and modulated oxidative stress biomarkers in the spinal cord of diabetic mice. The long-lasting antinociceptive effect induced by Lactobacillus acidophilus LA85 during diabetic neuropathy may be associated with reestablishment of redox and immune homeostasis in the spinal cord.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"1-15"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00069","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lactobacillus acidophilus (LA) ingestion has been previously shown to be beneficial for glycemic control and pain management, but not in diabetic neuropathy (DN). The present work was designed to evaluate the therapeutic potential of daily treatment with Lactobacillus acidophilus LA85 (LA85) strain in a model of streptozotocin (STZ)-induced painful DN in mice and characterize its mechanisms of action. Male C57BL/6 mice received a daily intraperitoneal administration of STZ (60 mg/kg, 3 days). After the establishment of sensory neuropathy, mice were daily treated with LA85 (1.0 × 107 or 1.0 × 109 CFU), vehicle, or gabapentin (isolated or associated with LA85) for 28 days. Nociceptive thresholds were assessed using von Frey and Hargreaves tests. Motor performance was evaluated in the rota-rod test. Glycaemic measurement was determined before and after induction in four different times. Gene expression profile, cytokine levels, and oxidative stress biomarkers in the spinal cord were evaluated by real-time PCR, ELISA, and biochemical assays, respectively. STZ-induced mice showed persistent hyperglycaemia and compatible behavioural signs of sensory neuropathy, such as mechanical allodynia and thermal hypoalgesia. Treatment with LA85, especially at 1.0 × 109 CFU, significantly reduced the neuropathy signs. No LA85-induced motor impairment was evidenced in the rota-rod test. LA85 treatment reduced levels of interleukin-1β, malondialdehyde, and nitrite, and modulated oxidative stress biomarkers in the spinal cord of diabetic mice. The long-lasting antinociceptive effect induced by Lactobacillus acidophilus LA85 during diabetic neuropathy may be associated with reestablishment of redox and immune homeostasis in the spinal cord.
期刊介绍:
Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators.
The journal will have five major sections:
* Food, nutrition and health
* Animal nutrition
* Processing and application
* Regulatory & safety aspects
* Medical & health applications
In these sections, topics dealt with by Beneficial Microbes include:
* Worldwide safety and regulatory issues
* Human and animal nutrition and health effects
* Latest discoveries in mechanistic studies and screening methods to unravel mode of action
* Host physiology related to allergy, inflammation, obesity, etc.
* Trends in application of (meta)genomics, proteomics and metabolomics
* New developments in how processing optimizes pro- & prebiotics for application
* Bacterial physiology related to health benefits