{"title":"Discrete-time competing-risks regression with or without penalization.","authors":"Tomer Meir, Malka Gorfine","doi":"10.1093/biomtc/ujaf040","DOIUrl":null,"url":null,"abstract":"<p><p>Many studies employ the analysis of time-to-event data that incorporates competing risks and right censoring. Most methods and software packages are geared towards analyzing data that comes from a continuous failure time distribution. However, failure-time data may sometimes be discrete either because time is inherently discrete or due to imprecise measurement. This paper introduces a new estimation procedure for discrete-time survival analysis with competing events. The proposed approach offers a major key advantage over existing procedures and allows for straightforward integration and application of widely used regularized regression and screening-features methods. We illustrate the benefits of our proposed approach by a comprehensive simulation study. Additionally, we showcase the utility of the proposed procedure by estimating a survival model for the length of stay of patients hospitalized in the intensive care unit, considering 3 competing events: discharge to home, transfer to another medical facility, and in-hospital death. A Python package, PyDTS, is available for applying the proposed method with additional features.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many studies employ the analysis of time-to-event data that incorporates competing risks and right censoring. Most methods and software packages are geared towards analyzing data that comes from a continuous failure time distribution. However, failure-time data may sometimes be discrete either because time is inherently discrete or due to imprecise measurement. This paper introduces a new estimation procedure for discrete-time survival analysis with competing events. The proposed approach offers a major key advantage over existing procedures and allows for straightforward integration and application of widely used regularized regression and screening-features methods. We illustrate the benefits of our proposed approach by a comprehensive simulation study. Additionally, we showcase the utility of the proposed procedure by estimating a survival model for the length of stay of patients hospitalized in the intensive care unit, considering 3 competing events: discharge to home, transfer to another medical facility, and in-hospital death. A Python package, PyDTS, is available for applying the proposed method with additional features.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.