{"title":"Quantum Synchronization via Active-Passive Decomposition Configuration: An Open Quantum-System Study.","authors":"Nan Yang, Ting Yu","doi":"10.3390/e27040432","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we study the synchronization of dissipative quantum harmonic oscillators in the framework of a quantum open system via the active-passive decomposition (APD) configuration. We show that two or more quantum systems may be synchronized when the quantum systems of interest are embedded in dissipative environments and influenced by a common classical system. Such a classical system is typically termed a controller, which (1) can drive quantum systems to cross different regimes (e.g., from periodic to chaotic motions) and (2) constructs the so-called active-passive decomposition configuration, such that all the quantum objects under consideration may be synchronized. The main finding of this paper is that we demonstrate that the complete synchronizations measured using the standard quantum deviation may be achieved for both stable regimes (quantum limit circles) and unstable regimes (quantum chaotic motions). As an example, we numerically show in an optomechanical setup that complete synchronization can be realized in quantum mechanical resonators.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026420/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040432","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the synchronization of dissipative quantum harmonic oscillators in the framework of a quantum open system via the active-passive decomposition (APD) configuration. We show that two or more quantum systems may be synchronized when the quantum systems of interest are embedded in dissipative environments and influenced by a common classical system. Such a classical system is typically termed a controller, which (1) can drive quantum systems to cross different regimes (e.g., from periodic to chaotic motions) and (2) constructs the so-called active-passive decomposition configuration, such that all the quantum objects under consideration may be synchronized. The main finding of this paper is that we demonstrate that the complete synchronizations measured using the standard quantum deviation may be achieved for both stable regimes (quantum limit circles) and unstable regimes (quantum chaotic motions). As an example, we numerically show in an optomechanical setup that complete synchronization can be realized in quantum mechanical resonators.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.