Deep learning reconstruction of diffusion-weighted imaging with single-shot echo-planar imaging in endometrial cancer: a comparison with multi-shot echo-planar imaging.
IF 2.3 3区 医学Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Taewoo Heo, Nam Kyung Lee, Suk Kim, Seung Baek Hong, Dong Soo Suh, Jin You Kim, Ji Won Lee, Tae Un Kim
{"title":"Deep learning reconstruction of diffusion-weighted imaging with single-shot echo-planar imaging in endometrial cancer: a comparison with multi-shot echo-planar imaging.","authors":"Taewoo Heo, Nam Kyung Lee, Suk Kim, Seung Baek Hong, Dong Soo Suh, Jin You Kim, Ji Won Lee, Tae Un Kim","doi":"10.1007/s00261-025-04955-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the efficacy of deep learning reconstruction (DLR) in diffusion-weighted imaging (DWI) with single-shot echo-planar imaging (SSEPI) for endometrial cancer, compared to multiplexed sensitivity-encoding (MUSE) DWI.</p><p><strong>Methods: </strong>We retrospectively reviewed 31 women with surgically confirmed endometrial cancer who underwent preoperative pelvic magnetic resonance imaging (MRI) including DWI. Qualitative analysis including overall image quality, susceptibility artifacts, sharpness of the uterine edge, and lesion conspicuity were compared among conventional SSEPI (SSEPI-C), SSEPI with DLR (SSEPI-DL), and MUSE using the Friedman's test. Quantitative analysis including the apparent diffusion coefficient (ADC) values, noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were also compared among three DWI sequences using the Friedman's test. In addition, the diagnostic accuracy for deep myometrial invasion was compared to three DWI sequences using Cochran's Q test.</p><p><strong>Results: </strong>The scores of overall image quality, sharpness of the uterine edge, and lesion conspicuity in SSEPI-DL were higher than SSEPI-C (p < 0.001) with no significant difference compared to MUSE (p > 0.05). Noise in SSEPI-DL was lower than SSEPI-C (p < 0.001), with no significant difference compared to MUSE (p > 0.05). SNR and CNR in SSEPI-DL were also superior to SSEPI-C (p < 0.001), and comparable to MUSE (p > 0.05). The diagnostic accuracy for detecting deep myometrial invasion showed no significant difference among SSEPI-C, SSEPI-DL and MUSE (p > 0.05).</p><p><strong>Conclusion: </strong>DLR improves the image quality of DWI in endometrial cancer, demonstrating image quality equivalent to that of SSEPI-DL and MUSE. SSEPI-DL can be an alternative to MUSE in female pelvic MRI, with the benefit of significantly shortened scan time.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-025-04955-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To evaluate the efficacy of deep learning reconstruction (DLR) in diffusion-weighted imaging (DWI) with single-shot echo-planar imaging (SSEPI) for endometrial cancer, compared to multiplexed sensitivity-encoding (MUSE) DWI.
Methods: We retrospectively reviewed 31 women with surgically confirmed endometrial cancer who underwent preoperative pelvic magnetic resonance imaging (MRI) including DWI. Qualitative analysis including overall image quality, susceptibility artifacts, sharpness of the uterine edge, and lesion conspicuity were compared among conventional SSEPI (SSEPI-C), SSEPI with DLR (SSEPI-DL), and MUSE using the Friedman's test. Quantitative analysis including the apparent diffusion coefficient (ADC) values, noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were also compared among three DWI sequences using the Friedman's test. In addition, the diagnostic accuracy for deep myometrial invasion was compared to three DWI sequences using Cochran's Q test.
Results: The scores of overall image quality, sharpness of the uterine edge, and lesion conspicuity in SSEPI-DL were higher than SSEPI-C (p < 0.001) with no significant difference compared to MUSE (p > 0.05). Noise in SSEPI-DL was lower than SSEPI-C (p < 0.001), with no significant difference compared to MUSE (p > 0.05). SNR and CNR in SSEPI-DL were also superior to SSEPI-C (p < 0.001), and comparable to MUSE (p > 0.05). The diagnostic accuracy for detecting deep myometrial invasion showed no significant difference among SSEPI-C, SSEPI-DL and MUSE (p > 0.05).
Conclusion: DLR improves the image quality of DWI in endometrial cancer, demonstrating image quality equivalent to that of SSEPI-DL and MUSE. SSEPI-DL can be an alternative to MUSE in female pelvic MRI, with the benefit of significantly shortened scan time.
期刊介绍:
Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section.
Reasons to Publish Your Article in Abdominal Radiology:
· Official journal of the Society of Abdominal Radiology (SAR)
· Published in Cooperation with:
European Society of Gastrointestinal and Abdominal Radiology (ESGAR)
European Society of Urogenital Radiology (ESUR)
Asian Society of Abdominal Radiology (ASAR)
· Efficient handling and Expeditious review
· Author feedback is provided in a mentoring style
· Global readership
· Readers can earn CME credits