{"title":"Genetically modified cell membrane proteins in tissue engineering and regenerative medicine.","authors":"Yilin Bao, Yue Hu, Mengxuan Hao, Qinmeng Zhang, Guoli Yang, Zhiwei Jiang","doi":"10.1088/1758-5090/add625","DOIUrl":null,"url":null,"abstract":"<p><p>Genetically modified cell membrane proteins can effectively regulate cell proliferation and differentiation, while also integrating novel biomaterials. As a promising biomedical tool, this technology has broad applications in tissue engineering and regenerative medicine. Both viral and non-viral gene transfection methods have been employed to create genetically modified cell membrane proteins. Numerous studies have demonstrated the significant efficacy of genetically modified cell membrane proteins in promoting bone regeneration, treating cardiovascular diseases, aiding lung injury recovery, advancing immunotherapy, and in applications involving engineered cell membrane sheets and cell spheroids. However, this technology faces several limitations, including biosafety and ethical concerns associated with genetic modification. This article summarizes recent advances in genetically modified cell membrane proteins, detailing their preparation, applications, limitations, and future directions.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/add625","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Genetically modified cell membrane proteins can effectively regulate cell proliferation and differentiation, while also integrating novel biomaterials. As a promising biomedical tool, this technology has broad applications in tissue engineering and regenerative medicine. Both viral and non-viral gene transfection methods have been employed to create genetically modified cell membrane proteins. Numerous studies have demonstrated the significant efficacy of genetically modified cell membrane proteins in promoting bone regeneration, treating cardiovascular diseases, aiding lung injury recovery, advancing immunotherapy, and in applications involving engineered cell membrane sheets and cell spheroids. However, this technology faces several limitations, including biosafety and ethical concerns associated with genetic modification. This article summarizes recent advances in genetically modified cell membrane proteins, detailing their preparation, applications, limitations, and future directions.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).