ABT263 Ameliorates Cellular Senescence, Aβ-Dependent Pathology and Cognitive Decline in Aged APP/PS1 Mice via Regulating PI3K/AKT/GSK-3β Pathways.

IF 2.5 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhi Tang, Xiao-Ling Wang, Yu-Xin Deng, Yan Xiao, Jian-Wei Xu, Li Wang, Xiao-Lan Qi
{"title":"ABT263 Ameliorates Cellular Senescence, Aβ-Dependent Pathology and Cognitive Decline in Aged APP/PS1 Mice via Regulating PI3K/AKT/GSK-3β Pathways.","authors":"Zhi Tang, Xiao-Ling Wang, Yu-Xin Deng, Yan Xiao, Jian-Wei Xu, Li Wang, Xiao-Lan Qi","doi":"10.1007/s12013-025-01745-y","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease is defined pathologically by the irregular buildup of senile plaques, neurofibrillary tangles, and associated neuroinflammation. As aging progresses, senescent cells gradually accumulate and significantly contribute to brain dysfunction; however, the precise mechanisms driving aging remain unclear. In the current study, ABT263, a potent senolytic drug, was administered orally to APP/PS1 mice (n = 16) for five days per cycle throughout the course of two cycles, and their behavioral tests in the Morris water maze were evaluated. Using mouse hippocampal tissue, senescence-related gene expression and SASP-associated protein expression were assessed using biochemical tests and immunohistochemical labeling. The Morris water maze test results indicated that ABT263 alleviated spatial memory impairment and reduced amyloid-β (Aβ) accumulation in APP/PS1 mice. Additionally, ABT263 treatment led to a decline in senescence-associated β-galactosidase activity, p16 senescence-related gene expression, and the expression of SASP-associated proteins, including IL-6, IL-8, and MMP-1. Further investigation revealed that ABT263 enhanced the phosphorylation levels of phosphatidylinositol-3 kinase (PI3K) (Tyr458), serine/threonine kinase AKT (S473), and glycogen synthase kinase-3β (GSK-3β) (Ser9) in APP/PS1 mice. Our results showed that ABT263 protected neurons against Aβ pathology, reduced the accumulation of senescent cells, and improved cognitive decline by enhancing PI3K/AKT/GSK-3 activity.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01745-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease is defined pathologically by the irregular buildup of senile plaques, neurofibrillary tangles, and associated neuroinflammation. As aging progresses, senescent cells gradually accumulate and significantly contribute to brain dysfunction; however, the precise mechanisms driving aging remain unclear. In the current study, ABT263, a potent senolytic drug, was administered orally to APP/PS1 mice (n = 16) for five days per cycle throughout the course of two cycles, and their behavioral tests in the Morris water maze were evaluated. Using mouse hippocampal tissue, senescence-related gene expression and SASP-associated protein expression were assessed using biochemical tests and immunohistochemical labeling. The Morris water maze test results indicated that ABT263 alleviated spatial memory impairment and reduced amyloid-β (Aβ) accumulation in APP/PS1 mice. Additionally, ABT263 treatment led to a decline in senescence-associated β-galactosidase activity, p16 senescence-related gene expression, and the expression of SASP-associated proteins, including IL-6, IL-8, and MMP-1. Further investigation revealed that ABT263 enhanced the phosphorylation levels of phosphatidylinositol-3 kinase (PI3K) (Tyr458), serine/threonine kinase AKT (S473), and glycogen synthase kinase-3β (GSK-3β) (Ser9) in APP/PS1 mice. Our results showed that ABT263 protected neurons against Aβ pathology, reduced the accumulation of senescent cells, and improved cognitive decline by enhancing PI3K/AKT/GSK-3 activity.

ABT263通过调节PI3K/AKT/GSK-3β通路改善衰老APP/PS1小鼠细胞衰老、a β依赖性病理和认知能力下降。
阿尔茨海默病的病理定义是老年斑、神经原纤维缠结和相关神经炎症的不规则积聚。随着年龄的增长,衰老细胞逐渐积累并显著导致脑功能障碍;然而,导致衰老的确切机制仍不清楚。在本研究中,我们给APP/PS1小鼠(n = 16)口服一种强效抗衰老药物ABT263,每个周期5天,在两个周期中,评估它们在Morris水迷宫中的行为测试。利用小鼠海马组织,通过生化试验和免疫组织化学标记评估衰老相关基因表达和sasp相关蛋白表达。Morris水迷宫实验结果表明,ABT263可减轻APP/PS1小鼠的空间记忆障碍,减少β淀粉样蛋白(Aβ)的积累。此外,ABT263处理导致衰老相关β-半乳糖苷酶活性下降,p16衰老相关基因表达下降,sasp相关蛋白表达下降,包括IL-6、IL-8和MMP-1。进一步研究发现,ABT263提高了APP/PS1小鼠中磷脂酰肌醇-3激酶(PI3K) (Tyr458)、丝氨酸/苏氨酸激酶AKT (S473)和糖原合成酶激酶-3β (GSK-3β) (Ser9)的磷酸化水平。我们的研究结果表明,ABT263通过提高PI3K/AKT/GSK-3活性,保护神经元免受Aβ病理,减少衰老细胞的积累,改善认知能力下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信