{"title":"Trienzyme-in-One Nanoparticle Making Multifunctional Synergistic Nanorobot for Tumor Therapy.","authors":"Zhixue Gao, Zili Yang, Ming Luo, Ziye Pei, Wentao Xu, Yushan Liu, Jie Guo, Xia Xiang, Zili Yu, Suling Zhao, Jianguo Guan","doi":"10.1002/smtd.202500142","DOIUrl":null,"url":null,"abstract":"<p><p>Current nanoparticle-based drug delivery systems for tumor therapy face significant challenges in intratumoral penetration and cellular internalization, leading to poor therapeutic efficacy. Herein, it is demonstrated that the sequential integration of glucose oxidase (GOx), catalase (CAT), and urease (URE) onto the half surface of biotin-modified Janus nanoparticles via the chemical coupling way produces nanorobots of multifunctionality and synergistic effect (denoted as UCGPJNRs). They can autonomously and powerfully move in tumor microenvironment (TME) by using endogenous urea as a fuel, enabling to penetrate deeper than 0.55 mm into tumor tissues, ≈5.5-fold of the previous counterparts. The UCGPJNRs perform motion-enhanced biotin receptor-mediated endocytosis and endoplasmic reticulum/Golgi apparatus pathway-mediated exocytosis, greatly improving the internalization efficiency of tumor cells. They release NH<sub>3</sub> when moving to produce selective toxicity against tumor cells in hypoxic TME. Further, they enhance the glucose consumption by ≈three times due to the motion-accelerated GOx/CAT cascade reaction, disrupting the metabolism against tumor cells on a large area. After intratumorally injecting into tumor-bearing mice, UCGPJNRs can significantly amplify the in vivo tumor growth inhibition rate through their synergistic effect. This work provides a plausible strategy to overcome current limitations in tumor treatment by anchoring multiple bioenzymes on one nanoparticle.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500142"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500142","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Current nanoparticle-based drug delivery systems for tumor therapy face significant challenges in intratumoral penetration and cellular internalization, leading to poor therapeutic efficacy. Herein, it is demonstrated that the sequential integration of glucose oxidase (GOx), catalase (CAT), and urease (URE) onto the half surface of biotin-modified Janus nanoparticles via the chemical coupling way produces nanorobots of multifunctionality and synergistic effect (denoted as UCGPJNRs). They can autonomously and powerfully move in tumor microenvironment (TME) by using endogenous urea as a fuel, enabling to penetrate deeper than 0.55 mm into tumor tissues, ≈5.5-fold of the previous counterparts. The UCGPJNRs perform motion-enhanced biotin receptor-mediated endocytosis and endoplasmic reticulum/Golgi apparatus pathway-mediated exocytosis, greatly improving the internalization efficiency of tumor cells. They release NH3 when moving to produce selective toxicity against tumor cells in hypoxic TME. Further, they enhance the glucose consumption by ≈three times due to the motion-accelerated GOx/CAT cascade reaction, disrupting the metabolism against tumor cells on a large area. After intratumorally injecting into tumor-bearing mice, UCGPJNRs can significantly amplify the in vivo tumor growth inhibition rate through their synergistic effect. This work provides a plausible strategy to overcome current limitations in tumor treatment by anchoring multiple bioenzymes on one nanoparticle.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.