Kadhirmathiyan Velumani, P Sundar Rajan, Mohammed Rafi Shaik, Shaik Althaf Hussain, Baji Shaik, Ajay Guru, Praveen Kumar Issac
{"title":"Protective Effect of Artemisinin Against Luperox Induced Oxidative Stress and Insulin Resistance via Pi3k/Akt Pathway in Zebrafish Larvae.","authors":"Kadhirmathiyan Velumani, P Sundar Rajan, Mohammed Rafi Shaik, Shaik Althaf Hussain, Baji Shaik, Ajay Guru, Praveen Kumar Issac","doi":"10.1007/s12013-025-01747-w","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress plays a critical role in the development of insulin resistance (IR), a key factor in metabolic disorders such as diabetes. Plant active ingredients play a crucial role in protecting organisms from environmental stressors and have shown promising therapeutic potential against various metabolic disorders. Artemisinin (ART), a sesquiterpenoid with a lactone ring obtained from the herb Artemisia annua, exhibits promising therapeutic properties. This study investigates the potential of ART on Luperox (LUP)-induced oxidative stress and the resulting IR in zebrafish larvae, specifically investigating the involvement of the PI3K/AKT signaling pathway. Zebrafish larvae were chosen due to their high sensitivity to oxidative stress, well-characterized glucose metabolism, and genetic similarity to human metabolic pathways. They were exposed to LUP to induce oxidative stress, followed by treatment with ART. The effects were evaluated through biochemical assays, fluorescence staining and gene expression analysis. ART effectively restored key antioxidant enzymes (SOD, CAT, GSH) and mitigated oxidative stress evidenced by reduction in intercellular ROS and lipid peroxidation, as confirmed through DCFDA and DPPP staining assays. Additionally, ART improved glucose uptake and lowered blood glucose levels. Gene expression analysis further indicated increased levels of PI3K/Akt signalling components and antioxidant-related genes (NRF2, HO-1, GPx, and GSR). Our results indicate that artemisinin significantly alleviates oxidative stress by reducing ROS levels and enhancing antioxidant enzyme activity. Furthermore, artemisinin mitigates IR by restoring glucose metabolism and upregulating PI3K/AKT pathway components. These findings highlight the translational potential of plant active ingredients, particularly artemisinin, for the development of therapies targeting IR and oxidative stress-related metabolic disorders.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"3693-3705"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01747-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidative stress plays a critical role in the development of insulin resistance (IR), a key factor in metabolic disorders such as diabetes. Plant active ingredients play a crucial role in protecting organisms from environmental stressors and have shown promising therapeutic potential against various metabolic disorders. Artemisinin (ART), a sesquiterpenoid with a lactone ring obtained from the herb Artemisia annua, exhibits promising therapeutic properties. This study investigates the potential of ART on Luperox (LUP)-induced oxidative stress and the resulting IR in zebrafish larvae, specifically investigating the involvement of the PI3K/AKT signaling pathway. Zebrafish larvae were chosen due to their high sensitivity to oxidative stress, well-characterized glucose metabolism, and genetic similarity to human metabolic pathways. They were exposed to LUP to induce oxidative stress, followed by treatment with ART. The effects were evaluated through biochemical assays, fluorescence staining and gene expression analysis. ART effectively restored key antioxidant enzymes (SOD, CAT, GSH) and mitigated oxidative stress evidenced by reduction in intercellular ROS and lipid peroxidation, as confirmed through DCFDA and DPPP staining assays. Additionally, ART improved glucose uptake and lowered blood glucose levels. Gene expression analysis further indicated increased levels of PI3K/Akt signalling components and antioxidant-related genes (NRF2, HO-1, GPx, and GSR). Our results indicate that artemisinin significantly alleviates oxidative stress by reducing ROS levels and enhancing antioxidant enzyme activity. Furthermore, artemisinin mitigates IR by restoring glucose metabolism and upregulating PI3K/AKT pathway components. These findings highlight the translational potential of plant active ingredients, particularly artemisinin, for the development of therapies targeting IR and oxidative stress-related metabolic disorders.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.