Mengjie Qiu, Wen Zhu, Xiaoxu Zheng, Zhong Chen, Yanqin Lin
{"title":"NMR Pure Shift Spectroscopy and Its Potential Applications in the Pharmaceutical Industry.","authors":"Mengjie Qiu, Wen Zhu, Xiaoxu Zheng, Zhong Chen, Yanqin Lin","doi":"10.1002/cbic.202401012","DOIUrl":null,"url":null,"abstract":"<p><p><sup>1</sup>H nuclear magnetic resonance (NMR) spectroscopy plays an important role in the pharmaceutical industry, but for complex substances, spectral analysis is challenging due to the narrow chemical shift range and signal splitting caused by scalar coupling. Pure shift techniques can suppress scalar coupling, improving spectral resolution. This article provides a review of pure shift techniques, including the main homonuclear broadband decoupling experiments and the methods for obtaining optimal pure shift spectra with the assistance of deep learning. Furthermore, it explores the potential application directions of pure shift techniques in the pharmaceutical industry, supported by relevant scientific examples. By summarizing recent advances and application opportunities, this article aims to promote the development and practical implementation of pure shift NMR techniques in the pharmaceutical industry.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e2401012"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202401012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
1H nuclear magnetic resonance (NMR) spectroscopy plays an important role in the pharmaceutical industry, but for complex substances, spectral analysis is challenging due to the narrow chemical shift range and signal splitting caused by scalar coupling. Pure shift techniques can suppress scalar coupling, improving spectral resolution. This article provides a review of pure shift techniques, including the main homonuclear broadband decoupling experiments and the methods for obtaining optimal pure shift spectra with the assistance of deep learning. Furthermore, it explores the potential application directions of pure shift techniques in the pharmaceutical industry, supported by relevant scientific examples. By summarizing recent advances and application opportunities, this article aims to promote the development and practical implementation of pure shift NMR techniques in the pharmaceutical industry.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).