Measuring Respiration Rate from Speech.

Q1 Computer Science
Digital Biomarkers Pub Date : 2025-02-28 eCollection Date: 2025-01-01 DOI:10.1159/000544913
Sidharth Abrol, Biswajit Das, Srikanth Nallanthighal, Okke Ouweltjes, Ulf Grossekathofer, Aki Härmä
{"title":"Measuring Respiration Rate from Speech.","authors":"Sidharth Abrol, Biswajit Das, Srikanth Nallanthighal, Okke Ouweltjes, Ulf Grossekathofer, Aki Härmä","doi":"10.1159/000544913","DOIUrl":null,"url":null,"abstract":"<p><p>The physical basis of speech production in humans requires the coordination of multiple anatomical systems, where inhalation and exhalation of air through lungs is at the core of the phenomenon. Vocalization happens during exhalation, while inhalation typically happens between speech pauses. We use deep learning models to predict respiratory signals during speech-breathing, from which the respiration rate is estimated. Bilingual data from a large clinical study (<i>N</i> = 1,005) are used to develop and evaluate a multivariate time series transformer model with speech encoder embeddings as input. The best model shows the predicted respiration rate from speech within ±3 BPM for 82% of test subjects. A <i>noise-aware</i> algorithm was also tested in a simulated hospital environment with varying noise levels to evaluate the impact on performance. This work proposes and validates speech as a virtual sensor for respiration rate, which can be an efficient and cost-effective enabler for remote patient monitoring and telehealth solutions.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"9 1","pages":"67-74"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11999658/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000544913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The physical basis of speech production in humans requires the coordination of multiple anatomical systems, where inhalation and exhalation of air through lungs is at the core of the phenomenon. Vocalization happens during exhalation, while inhalation typically happens between speech pauses. We use deep learning models to predict respiratory signals during speech-breathing, from which the respiration rate is estimated. Bilingual data from a large clinical study (N = 1,005) are used to develop and evaluate a multivariate time series transformer model with speech encoder embeddings as input. The best model shows the predicted respiration rate from speech within ±3 BPM for 82% of test subjects. A noise-aware algorithm was also tested in a simulated hospital environment with varying noise levels to evaluate the impact on performance. This work proposes and validates speech as a virtual sensor for respiration rate, which can be an efficient and cost-effective enabler for remote patient monitoring and telehealth solutions.

通过说话测量呼吸频率。
人类语言产生的物理基础需要多个解剖系统的协调,其中通过肺部吸入和呼出空气是这一现象的核心。发声发生在呼气时,而吸气通常发生在说话停顿之间。我们使用深度学习模型来预测语音呼吸过程中的呼吸信号,并从中估计呼吸速率。本文使用来自大型临床研究(N = 1005)的双语数据来开发和评估一个以语音编码器嵌入为输入的多变量时间序列转换器模型。最好的模型显示了82%的测试对象在±3 BPM以内的语音预测呼吸速率。还在具有不同噪声水平的模拟医院环境中测试了噪声感知算法,以评估对性能的影响。这项工作提出并验证了语音作为呼吸速率的虚拟传感器,它可以成为远程患者监测和远程医疗解决方案的高效和经济的推手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Biomarkers
Digital Biomarkers Medicine-Medicine (miscellaneous)
CiteScore
10.60
自引率
0.00%
发文量
12
审稿时长
23 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信