Storage and release of NO3- and I- via layered double hydroxide in carbonate electrolyte for stable lithium metal battery.

IF 18.8 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Fenglin Wang, Zhicheng Zheng, Zuxin Wen, Wenqiang Fang, Chengwei Kuang, Fashen Chen, Hao Wan, Ning Zhang, Xiaohe Liu, Renzhi Ma, Gen Chen
{"title":"Storage and release of NO<sub>3</sub><sup>-</sup> and I<sup>-</sup> via layered double hydroxide in carbonate electrolyte for stable lithium metal battery.","authors":"Fenglin Wang, Zhicheng Zheng, Zuxin Wen, Wenqiang Fang, Chengwei Kuang, Fashen Chen, Hao Wan, Ning Zhang, Xiaohe Liu, Renzhi Ma, Gen Chen","doi":"10.1016/j.scib.2025.04.016","DOIUrl":null,"url":null,"abstract":"<p><p>The formation of inactive lithium (Li) in Li metal battery (LMB) primarily originates from the undesirable components of solid electrolyte interphase (SEI) and the growth of dendritic Li. LiNO<sub>3</sub> has emerged as a promising electrolyte additive for mitigating interfacial instability and Li dendrite propagation through the in situ construction of nitride-rich SEI. However, the limited solubility of LiNO<sub>3</sub> in carbonate electrolytes hinders its practical utilization. Herein, the bifunctional I<sup>-</sup>-MgAl layered double hydroxide (LDH) is proposed to synergistically dissolve LiNO<sub>3</sub> and rejuvenate inactive Li. The anion-exchange capability of LDH facilitates the substitution of native I<sup>-</sup> with NO<sub>3</sub><sup>-</sup>, forming NO<sub>3</sub><sup>-</sup>-MgAl LDH and simultaneously generating I<sub>3</sub><sup>-</sup>/I<sup>-</sup> redox mediators in electrolyte. This substitution not only achieves the dissolution of LiNO<sub>3</sub>, serving as a sustainable nitrogen source to optimize SEI components, but also enables the extracted I<sub>3</sub><sup>-</sup>/I<sup>-</sup> redox couple to react spontaneously with inactive Li, remarkably enhancing the coulombic efficiency. Consequently, the engineered electrolyte significantly extends the lifespan of Li||LiFePO<sub>4</sub>, Li||NCM, and Li@Cu||LiFePO<sub>4</sub> cells. The unique architecture of LDH can precisely control the storage and release of NO<sub>3</sub><sup>-</sup> and I<sup>-</sup>, offering a transformative electrolyte design framework for next-generation batteries by integrating two-dimensional material properties with electrochemical mechanisms.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.scib.2025.04.016","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The formation of inactive lithium (Li) in Li metal battery (LMB) primarily originates from the undesirable components of solid electrolyte interphase (SEI) and the growth of dendritic Li. LiNO3 has emerged as a promising electrolyte additive for mitigating interfacial instability and Li dendrite propagation through the in situ construction of nitride-rich SEI. However, the limited solubility of LiNO3 in carbonate electrolytes hinders its practical utilization. Herein, the bifunctional I--MgAl layered double hydroxide (LDH) is proposed to synergistically dissolve LiNO3 and rejuvenate inactive Li. The anion-exchange capability of LDH facilitates the substitution of native I- with NO3-, forming NO3--MgAl LDH and simultaneously generating I3-/I- redox mediators in electrolyte. This substitution not only achieves the dissolution of LiNO3, serving as a sustainable nitrogen source to optimize SEI components, but also enables the extracted I3-/I- redox couple to react spontaneously with inactive Li, remarkably enhancing the coulombic efficiency. Consequently, the engineered electrolyte significantly extends the lifespan of Li||LiFePO4, Li||NCM, and Li@Cu||LiFePO4 cells. The unique architecture of LDH can precisely control the storage and release of NO3- and I-, offering a transformative electrolyte design framework for next-generation batteries by integrating two-dimensional material properties with electrochemical mechanisms.

基于层状双氢氧化物的稳定锂金属电池在碳酸盐电解质中的储存和释放NO3-和I-。
锂金属电池(LMB)中非活性锂(Li)的形成主要是由于固体电解质间相(SEI)的不良成分和枝晶锂的生长。LiNO3已成为一种很有前途的电解质添加剂,可以通过原位构建富氮SEI来减轻界面不稳定性和Li枝晶的扩展。然而,LiNO3在碳酸盐电解质中的溶解度有限,阻碍了它的实际应用。本文提出了双功能I—MgAl层状双氢氧化物(LDH)来协同溶解LiNO3并使失活的Li恢复活力。LDH的阴离子交换能力促进了天然I-被NO3-取代,形成NO3——MgAl LDH,同时在电解质中生成I3-/I-氧化还原介质。这种取代不仅实现了LiNO3的溶解,作为可持续的氮源来优化SEI组分,而且使提取的I3-/I-氧化还原偶对能够与失活的Li自发反应,显著提高了库仑效率。因此,该工程电解质显著延长了Li||LiFePO4、Li||NCM和Li@Cu||LiFePO4电池的寿命。LDH独特的结构可以精确控制NO3-和I-的储存和释放,通过将二维材料特性与电化学机制相结合,为下一代电池提供了一种变革性的电解质设计框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Bulletin
Science Bulletin MULTIDISCIPLINARY SCIENCES-
CiteScore
24.60
自引率
2.10%
发文量
8092
期刊介绍: Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信