Unraveling Tissue Complexity Through Single-Cell and Spatial Transcriptomics

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Shiquan Sun, Chaoyong Yang, Lulu Shang, Rong Fan
{"title":"Unraveling Tissue Complexity Through Single-Cell and Spatial Transcriptomics","authors":"Shiquan Sun,&nbsp;Chaoyong Yang,&nbsp;Lulu Shang,&nbsp;Rong Fan","doi":"10.1002/smtd.202500710","DOIUrl":null,"url":null,"abstract":"<p>We are pleased to present this special section of <i>Small Methods</i>, which highlights the rapidly advancing fields of single-cell and spatial transcriptomics.</p><p>Single-cell transcriptomics and spatial transcriptomics have emerged as transformative tools for high-resolution profiling of gene expression. Single-cell approaches reveal cellular diversity at unprecedented resolution, while spatial transcriptomics preserves the spatial context of gene activity, enabling precise mapping of tissue architecture. Together, these technologies provide complementary insights into biological systems, uncovering cellular heterogeneity, dynamic interactions, and spatially driven molecular processes across diverse fields including developmental biology, cancer biology, immunology, and neuroscience. This collection includes 3 reviews and 10 research articles from prominent scientists with their valuable insights.</p><p>In this special section, we explore the transformative potential of spatial transcriptomics data analysis. Gao et al. (smtd.2401451) introduce PASSAGE, a deep learning framework for identifying phenotype-associated signatures across heterogeneous spatial slices. Yang et al. (smtd.2400975) propose a novel cell segmentation method UCS, optimized for large-scale subcellular spatial transcriptomics data. Ishaque et al. (smtd.2401123) present Sainsc, a cell-segmentation-free approach for transcriptome-wide, nanoscale-resolution spatial data. Yuan et al. (smtd.2401199) present a kernel-based strategy to model spatially continuous variations of the tissue microenvironment using a new kernel-based strategyFei et al. (smtd.2401056) introduce a membrane-based method that greatly increases the number of genes captured in cells compared to the number captured using nucleus-based methods. These innovations highlight the power of spatially resolved transcriptomics in decoding tissue complexity.</p><p>Transitioning to integrative analysis of single-cell transcriptomics, spatial transcriptomics data, and other data, this field is reshaping our understanding of tissue architecture and gene expression. Liu et al. (smtd.2401145) developed QR-SIDE, a computational framework that maps spatial heterogeneity and optimizes marker gene contributions for robust deconvolution. Chen et al. (smtd.2401163) developed SpaDA, a spatially aware domain adaptation method integrating transcriptomics, histology, and spatial data to resolve cell-type distributions. These tools exemplify the synergy of multi-modal data in advancing oncology, neuroscience, and precision medicine. Last, Su et al. (smtd.2400991) introduce scPDS, a transformer-based deep learning method that predicts drug sensitivities from scRNA-seq data via pathway activation mapping, bridging transcriptomics, and therapeutic development.</p><p>The true power of these technologies lies in their applications. Hicks et al. (smtd.2401194) first review the challenges and opportunities of integrating spatially-resolved transcriptomics data across tissues and individuals. Yu et al. (smtd.2401107) review cutting-edge spatial transcriptomics (ST) technologies, computational tools, and their neuroscientific applications. Zeng et al. (smtd.2401171) review the advancements and strategies of spatial omics technologies, summarize their applications in biomedical research, and highlight the power of spatial omics technologies in advancing the understanding of life sciences related to development and disease. Then, Peng et al. (smtd.2401272) developed STExplore, a comprehensive spatial transcriptomics data analysis platform for spatial data integrative analysis. Finally, Ye et al. (smtd.2401192) combine single-cell and spatial transcriptomics to reveal interactions between POSTN+ cancer-associated fibroblasts (CAFs) and CDK16+ tumor cells, driving chemotherapy resistance. These studies exemplify how the integration of these technologies can drive breakthroughs in understanding complex biological systems.</p><p>Overall, this special section highlights innovative frameworks that integrate single-cell and spatial transcriptomics to map tissue architecture, decode cellular interactions, and uncover disease mechanisms. Advanced machine learning methods, scalable platforms, and multi-omics integration strategies are pushing the boundaries of biomedical research, offering new insights into tumor microenvironments, neural circuits, and immune dynamics.</p><p>Finally, we extend our heartfelt thanks to the authors, reviewers, and editorial team for their invaluable contributions to this special section. It is our hope that this collection of work will inspire further innovation and collaboration, driving the field forward and unlocking new frontiers in biological research.</p><p>The authors declare no conflict of interest.</p><p>S.S., L.S., and C.Y. wrote the editorial. All authors provided a critical review of the editorial and approved the final editorial before submission.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 5","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smtd.202500710","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202500710","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We are pleased to present this special section of Small Methods, which highlights the rapidly advancing fields of single-cell and spatial transcriptomics.

Single-cell transcriptomics and spatial transcriptomics have emerged as transformative tools for high-resolution profiling of gene expression. Single-cell approaches reveal cellular diversity at unprecedented resolution, while spatial transcriptomics preserves the spatial context of gene activity, enabling precise mapping of tissue architecture. Together, these technologies provide complementary insights into biological systems, uncovering cellular heterogeneity, dynamic interactions, and spatially driven molecular processes across diverse fields including developmental biology, cancer biology, immunology, and neuroscience. This collection includes 3 reviews and 10 research articles from prominent scientists with their valuable insights.

In this special section, we explore the transformative potential of spatial transcriptomics data analysis. Gao et al. (smtd.2401451) introduce PASSAGE, a deep learning framework for identifying phenotype-associated signatures across heterogeneous spatial slices. Yang et al. (smtd.2400975) propose a novel cell segmentation method UCS, optimized for large-scale subcellular spatial transcriptomics data. Ishaque et al. (smtd.2401123) present Sainsc, a cell-segmentation-free approach for transcriptome-wide, nanoscale-resolution spatial data. Yuan et al. (smtd.2401199) present a kernel-based strategy to model spatially continuous variations of the tissue microenvironment using a new kernel-based strategyFei et al. (smtd.2401056) introduce a membrane-based method that greatly increases the number of genes captured in cells compared to the number captured using nucleus-based methods. These innovations highlight the power of spatially resolved transcriptomics in decoding tissue complexity.

Transitioning to integrative analysis of single-cell transcriptomics, spatial transcriptomics data, and other data, this field is reshaping our understanding of tissue architecture and gene expression. Liu et al. (smtd.2401145) developed QR-SIDE, a computational framework that maps spatial heterogeneity and optimizes marker gene contributions for robust deconvolution. Chen et al. (smtd.2401163) developed SpaDA, a spatially aware domain adaptation method integrating transcriptomics, histology, and spatial data to resolve cell-type distributions. These tools exemplify the synergy of multi-modal data in advancing oncology, neuroscience, and precision medicine. Last, Su et al. (smtd.2400991) introduce scPDS, a transformer-based deep learning method that predicts drug sensitivities from scRNA-seq data via pathway activation mapping, bridging transcriptomics, and therapeutic development.

The true power of these technologies lies in their applications. Hicks et al. (smtd.2401194) first review the challenges and opportunities of integrating spatially-resolved transcriptomics data across tissues and individuals. Yu et al. (smtd.2401107) review cutting-edge spatial transcriptomics (ST) technologies, computational tools, and their neuroscientific applications. Zeng et al. (smtd.2401171) review the advancements and strategies of spatial omics technologies, summarize their applications in biomedical research, and highlight the power of spatial omics technologies in advancing the understanding of life sciences related to development and disease. Then, Peng et al. (smtd.2401272) developed STExplore, a comprehensive spatial transcriptomics data analysis platform for spatial data integrative analysis. Finally, Ye et al. (smtd.2401192) combine single-cell and spatial transcriptomics to reveal interactions between POSTN+ cancer-associated fibroblasts (CAFs) and CDK16+ tumor cells, driving chemotherapy resistance. These studies exemplify how the integration of these technologies can drive breakthroughs in understanding complex biological systems.

Overall, this special section highlights innovative frameworks that integrate single-cell and spatial transcriptomics to map tissue architecture, decode cellular interactions, and uncover disease mechanisms. Advanced machine learning methods, scalable platforms, and multi-omics integration strategies are pushing the boundaries of biomedical research, offering new insights into tumor microenvironments, neural circuits, and immune dynamics.

Finally, we extend our heartfelt thanks to the authors, reviewers, and editorial team for their invaluable contributions to this special section. It is our hope that this collection of work will inspire further innovation and collaboration, driving the field forward and unlocking new frontiers in biological research.

The authors declare no conflict of interest.

S.S., L.S., and C.Y. wrote the editorial. All authors provided a critical review of the editorial and approved the final editorial before submission.

通过单细胞和空间转录组学揭示组织复杂性。
我们很高兴地介绍这个小方法的特殊部分,它突出了单细胞和空间转录组学的快速发展领域。单细胞转录组学和空间转录组学已经成为高分辨率基因表达谱分析的变革性工具。单细胞方法以前所未有的分辨率揭示细胞多样性,而空间转录组学保留了基因活性的空间背景,从而能够精确绘制组织结构。总之,这些技术为生物系统提供了互补的见解,揭示了细胞异质性、动态相互作用和空间驱动的分子过程,涵盖了发育生物学、癌症生物学、免疫学和神经科学等不同领域。本书收录了来自杰出科学家的3篇评论和10篇研究文章,其中包含了他们宝贵的见解。在本专题中,我们将探讨空间转录组学数据分析的变革潜力。Gao等人(smtd.2401451)介绍了PASSAGE,这是一个深度学习框架,用于识别跨异质空间片的表型相关特征。Yang等人(smtd.2400975)提出了一种新的细胞分割方法UCS,针对大规模亚细胞空间转录组学数据进行了优化。Ishaque等人(smtd.2401123)提出了一种无细胞分割的方法,用于转录组范围内的纳米级分辨率空间数据。Yuan等人(smtd.2401199)提出了一种基于核的策略,使用一种新的基于核的策略来模拟组织微环境的空间连续变化。fei等人(smtd.2401056)引入了一种基于膜的方法,与使用基于核的方法捕获的基因数量相比,该方法大大增加了细胞中捕获的基因数量。这些创新突出了空间分解转录组学在解码组织复杂性方面的力量。过渡到单细胞转录组学、空间转录组学数据和其他数据的综合分析,这一领域正在重塑我们对组织结构和基因表达的理解。Liu等人(smtd.2401145)开发了QR-SIDE,这是一个计算框架,可以绘制空间异质性并优化标记基因对鲁棒反褶积的贡献。Chen等人(smtd.2401163)开发了SpaDA,这是一种整合转录组学、组织学和空间数据来解析细胞类型分布的空间感知域适应方法。这些工具体现了多模式数据在推进肿瘤学、神经科学和精准医学方面的协同作用。最后,Su等人(smtd.2400991)介绍了scPDS,这是一种基于转换器的深度学习方法,通过途径激活图谱、桥接转录组学和治疗开发,从scRNA-seq数据预测药物敏感性。这些技术的真正力量在于它们的应用。Hicks等人(smtd.2401194)首先回顾了整合跨组织和个体的空间解析转录组学数据的挑战和机遇。Yu等人(smtd.2401107)综述了前沿的空间转录组学(ST)技术、计算工具及其神经科学应用。Zeng等人(smtd.2401171)回顾了空间组学技术的进展和策略,总结了其在生物医学研究中的应用,并强调了空间组学技术在促进与发育和疾病相关的生命科学理解方面的力量。随后,Peng等人(smtd.2401272)开发了用于空间数据整合分析的综合空间转录组学数据分析平台STExplore。最后,Ye等人(smtd.2401192)结合单细胞和空间转录组学揭示了POSTN+癌症相关成纤维细胞(CAFs)和CDK16+肿瘤细胞之间的相互作用,驱动化疗耐药。这些研究举例说明了这些技术的整合如何推动对复杂生物系统的理解取得突破。总的来说,这一特殊部分强调了整合单细胞和空间转录组学来绘制组织结构、解码细胞相互作用和揭示疾病机制的创新框架。先进的机器学习方法、可扩展平台和多组学集成策略正在推动生物医学研究的边界,为肿瘤微环境、神经回路和免疫动力学提供新的见解。最后,我们衷心感谢作者、审稿人和编辑团队为这一专题做出的宝贵贡献。我们希望这些工作将激发进一步的创新和合作,推动该领域的发展,并开辟生物学研究的新领域。作者声明无利益冲突。这篇社论的作者是C.Y.。所有作者在提交前都对社论进行了批判性的审查,并批准了最后的社论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信