{"title":"Development and Fabrication of Emodin-Loaded Patches Using Geraniol as a Penetration Enhancer for Transdermal Delivery.","authors":"Suhas Shivaji Siddheshwar, Sandhya Jadhav, Someshwar Dattatraya Mankar, Arti Changdev Ghorpade","doi":"10.1089/adt.2025.010","DOIUrl":null,"url":null,"abstract":"<p><p>\n <i>Diabetes management necessitates innovative approaches to enhance treatment efficacy and patient adherence. The study aimed to develop a transdermal patch loaded with emodin, hypothesized to provide a noninvasive treatment option that circumvents complications of oral administration. To optimize the formulation, a full factorial experimental design was employed, focusing on the concentrations of hydroxypropyl methylcellulose K15 and geraniol. Compatibility and mechanical characteristics were investigated using Fourier-transform infrared spectroscopy and differential scanning calorimetry. The patch's drug release profile was assessed via <i>in vitro</i> studies, while its stability was tested under accelerated conditions. The antidiabetic efficacy was evaluated in diabetic rats using an <i>in vivo</i> model. The optimized patch (batch SF7) released 94.57% of the drug over 12 h. Under accelerated stability conditions, the patch showed a minor decline in folding endurance from 396 ± 1.50 to 369 ± 2.63 folds and drug content uniformity from 98.70% ± 0.02% to 98.14% ± 0.23%. The <i>in vivo</i> antidiabetic study demonstrated a considerable decrease in blood glucose levels in SF7-treated rats from 245.83 ± 3.25 mg/dL to 120.86 ± 4.24 mg/dL over 12 h (<i>p</i>-value < 0.001), comparable with the standard drug glibenclamide. The emodin-loaded transdermal patch displayed consistent drug release, maintained stability, and demonstrated significant antidiabetic activity, suggesting that it is a promising noninvasive therapy for diabetes management.</i>\n </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2025.010","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes management necessitates innovative approaches to enhance treatment efficacy and patient adherence. The study aimed to develop a transdermal patch loaded with emodin, hypothesized to provide a noninvasive treatment option that circumvents complications of oral administration. To optimize the formulation, a full factorial experimental design was employed, focusing on the concentrations of hydroxypropyl methylcellulose K15 and geraniol. Compatibility and mechanical characteristics were investigated using Fourier-transform infrared spectroscopy and differential scanning calorimetry. The patch's drug release profile was assessed via in vitro studies, while its stability was tested under accelerated conditions. The antidiabetic efficacy was evaluated in diabetic rats using an in vivo model. The optimized patch (batch SF7) released 94.57% of the drug over 12 h. Under accelerated stability conditions, the patch showed a minor decline in folding endurance from 396 ± 1.50 to 369 ± 2.63 folds and drug content uniformity from 98.70% ± 0.02% to 98.14% ± 0.23%. The in vivo antidiabetic study demonstrated a considerable decrease in blood glucose levels in SF7-treated rats from 245.83 ± 3.25 mg/dL to 120.86 ± 4.24 mg/dL over 12 h (p-value < 0.001), comparable with the standard drug glibenclamide. The emodin-loaded transdermal patch displayed consistent drug release, maintained stability, and demonstrated significant antidiabetic activity, suggesting that it is a promising noninvasive therapy for diabetes management.
期刊介绍:
ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application.
ASSAY and Drug Development Technologies coverage includes:
-Assay design, target development, and high-throughput technologies-
Hit to Lead optimization and medicinal chemistry through preclinical candidate selection-
Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis-
Approaches to assays configured for gene families, inherited, and infectious diseases-
Assays and strategies for adapting model organisms to drug discovery-
The use of stem cells as models of disease-
Translation of phenotypic outputs to target identification-
Exploration and mechanistic studies of the technical basis for assay and screening artifacts