Post-cerebral ischemia energy crisis: the role of glucose metabolism in the energetic crisis.

IF 1.5 4区 医学 Q4 NEUROSCIENCES
Jia-Ting Li, Dian Ou, Yi-Ming Shi, Le Bao, Yan-Ling Li, Ting-Ting Xiong, Yang Bai, Huang Ding
{"title":"Post-cerebral ischemia energy crisis: the role of glucose metabolism in the energetic crisis.","authors":"Jia-Ting Li, Dian Ou, Yi-Ming Shi, Le Bao, Yan-Ling Li, Ting-Ting Xiong, Yang Bai, Huang Ding","doi":"10.1080/02699052.2025.2492751","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cells universally employ an efficiency-driven metabolic switch mechanism during nutritional changes, growth, and differentiation, transitioning from oxidative phosphorylation (OXPHOS) to glycolysis to ensure survival under hypoxic conditions or high energy demands. In cerebral ischemia, inadequate blood supply causes oxygen and energy deprivation, prompting brain cells to initiate glycolytic reprogramming to meet urgent energy needs. While this adaptation is a temporary solution, it may lead to lactic acidosis, aggravated inflammation, and increased free radical production. Prolonged reperfusion with sustained glycolysis can exacerbate brain cell damage, potentially causing irreversible harm.</p><p><strong>Objectives: </strong>This review systematically examines the dynamic changes in glucose metabolic transport mechanisms and the roles of immediate, early, intermediate, and late responder cells, along with their regulatory factors, in glycolytic reprogramming.</p><p><strong>Methods: </strong>Using a temporal analysis framework based on the body's natural response sequence to pathological events, we elucidate how cells at different stages collaborate to address glucose metabolism reprogramming under pathological conditions.</p><p><strong>Conclusions: </strong>Reversing glucose metabolism reprogramming and inhibiting glycolysis may improve the pathological processes of ischemic stroke, offering potential therapeutic benefits.</p>","PeriodicalId":9082,"journal":{"name":"Brain injury","volume":" ","pages":"1-11"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain injury","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02699052.2025.2492751","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cells universally employ an efficiency-driven metabolic switch mechanism during nutritional changes, growth, and differentiation, transitioning from oxidative phosphorylation (OXPHOS) to glycolysis to ensure survival under hypoxic conditions or high energy demands. In cerebral ischemia, inadequate blood supply causes oxygen and energy deprivation, prompting brain cells to initiate glycolytic reprogramming to meet urgent energy needs. While this adaptation is a temporary solution, it may lead to lactic acidosis, aggravated inflammation, and increased free radical production. Prolonged reperfusion with sustained glycolysis can exacerbate brain cell damage, potentially causing irreversible harm.

Objectives: This review systematically examines the dynamic changes in glucose metabolic transport mechanisms and the roles of immediate, early, intermediate, and late responder cells, along with their regulatory factors, in glycolytic reprogramming.

Methods: Using a temporal analysis framework based on the body's natural response sequence to pathological events, we elucidate how cells at different stages collaborate to address glucose metabolism reprogramming under pathological conditions.

Conclusions: Reversing glucose metabolism reprogramming and inhibiting glycolysis may improve the pathological processes of ischemic stroke, offering potential therapeutic benefits.

脑缺血后能量危机:葡萄糖代谢在能量危机中的作用。
背景:细胞在营养变化、生长和分化过程中普遍采用效率驱动的代谢转换机制,从氧化磷酸化(OXPHOS)过渡到糖酵解,以确保在缺氧条件或高能量需求下生存。在脑缺血时,血液供应不足导致氧气和能量剥夺,促使脑细胞启动糖酵解重编程以满足紧急的能量需求。虽然这种适应是一种暂时的解决方案,但它可能导致乳酸酸中毒、炎症加重和自由基产生增加。持续糖酵解延长再灌注可加重脑细胞损伤,可能造成不可逆的伤害。目的:本综述系统地研究了糖代谢转运机制的动态变化,以及即时、早期、中期和晚期反应细胞及其调节因子在糖酵解重编程中的作用。方法:使用基于身体对病理事件的自然反应序列的时间分析框架,我们阐明了不同阶段的细胞如何协作以解决病理条件下的糖代谢重编程。结论:逆转糖代谢重编程和抑制糖酵解可能改善缺血性脑卒中的病理过程,提供潜在的治疗益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain injury
Brain injury 医学-康复医学
CiteScore
3.50
自引率
5.30%
发文量
148
审稿时长
12 months
期刊介绍: Brain Injury publishes critical information relating to research and clinical practice, adult and pediatric populations. The journal covers a full range of relevant topics relating to clinical, translational, and basic science research. Manuscripts address emergency and acute medical care, acute and post-acute rehabilitation, family and vocational issues, and long-term supports. Coverage includes assessment and interventions for functional, communication, neurological and psychological disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信