Radio frequency switching devices based on two-dimensional materials for high-speed communication applications.

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Fei Xing, Fangzhu Qing, Mo Zhou, Congcong Ning, Wanyi Liao, Xuesong Li
{"title":"Radio frequency switching devices based on two-dimensional materials for high-speed communication applications.","authors":"Fei Xing, Fangzhu Qing, Mo Zhou, Congcong Ning, Wanyi Liao, Xuesong Li","doi":"10.1039/d5nh00105f","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) materials, with their atomic-scale thickness, high carrier mobility, tunable wide bandgap, and excellent electrical and mechanical properties, have demonstrated vast application prospects in research on radio frequency (RF) switch devices. This review summarizes the recent advances in 2D materials for RF switch applications, focusing on the performance and mechanisms of 2D material-based RF switch devices at high frequencies, wide bandwidths, and high transmission rates. The analysis includes the design and optimization of devices based on graphene, transition metal dichalcogenides, hexagonal boron nitride, and their heterojunctions. By comparing the key performance parameters such as insertion loss, isolation, and cutoff frequency of the switches, this review reveals the influence of material selection, structural design, and defect control on device performance. Furthermore, it discusses the challenges of 2D material-based RF switches in practical applications, including material defect control, reduction of contact resistance, and the technical bottlenecks of large-scale industrial production. Finally, this review envisions future research directions, proposing potential pathways for improving device performance through heterojunction structure design, multifunctional integration, and process optimization. This study is of great significance for advancing the development of high-performance RF switches and the application of communication technologies in 6G and higher frequency bands.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00105f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) materials, with their atomic-scale thickness, high carrier mobility, tunable wide bandgap, and excellent electrical and mechanical properties, have demonstrated vast application prospects in research on radio frequency (RF) switch devices. This review summarizes the recent advances in 2D materials for RF switch applications, focusing on the performance and mechanisms of 2D material-based RF switch devices at high frequencies, wide bandwidths, and high transmission rates. The analysis includes the design and optimization of devices based on graphene, transition metal dichalcogenides, hexagonal boron nitride, and their heterojunctions. By comparing the key performance parameters such as insertion loss, isolation, and cutoff frequency of the switches, this review reveals the influence of material selection, structural design, and defect control on device performance. Furthermore, it discusses the challenges of 2D material-based RF switches in practical applications, including material defect control, reduction of contact resistance, and the technical bottlenecks of large-scale industrial production. Finally, this review envisions future research directions, proposing potential pathways for improving device performance through heterojunction structure design, multifunctional integration, and process optimization. This study is of great significance for advancing the development of high-performance RF switches and the application of communication technologies in 6G and higher frequency bands.

基于二维材料的射频开关器件用于高速通信。
二维(2D)材料以其原子级厚度、高载流子迁移率、可调的宽禁带以及优异的电学和力学性能,在射频(RF)开关器件的研究中显示出广阔的应用前景。本文综述了用于射频开关的二维材料的最新进展,重点介绍了基于二维材料的高频、宽带宽和高传输速率的射频开关器件的性能和机制。分析包括基于石墨烯、过渡金属二硫族化物、六方氮化硼及其异质结的器件的设计和优化。通过比较开关的插入损耗、隔离和截止频率等关键性能参数,揭示了材料选择、结构设计和缺陷控制对器件性能的影响。此外,它还讨论了基于二维材料的射频开关在实际应用中的挑战,包括材料缺陷控制,减少接触电阻,以及大规模工业生产的技术瓶颈。最后,本文展望了未来的研究方向,提出了通过异质结结构设计、多功能集成和工艺优化来提高器件性能的潜在途径。本研究对推进高性能射频开关的发展和6G及以上频段通信技术的应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信