Xinyu Zhang, Xuan Zhou, Quan Wan, Taolei Sun, Guanbin Gao
{"title":"A smartphone sensing colorimetric detection of ascorbic acid in fruit samples based on Cu<sub>2</sub>Fe(CN)<sub>6</sub>@PVP nanozyme.","authors":"Xinyu Zhang, Xuan Zhou, Quan Wan, Taolei Sun, Guanbin Gao","doi":"10.1016/j.talanta.2025.128152","DOIUrl":null,"url":null,"abstract":"<p><p>Prussian blue analogue nanozymes (PBANZs) have been widely employed in the colorimetric detection of various organic small molecules due to their peroxidase-like activity. However, the practical applications of PBANZ are limited by its narrow operating pH range, insufficient catalytic activity, and poor stability. In this study, we synthesized a novel Cu<sub>2</sub>Fe(CN)<sub>6</sub>@PVP PBA nanozyme (Cu-PBANZ) using polyvinylpyrrolidone (PVP) as a capping ligand. This novel Cu-PBANZ not only exhibited enhanced peroxidase-like activity and improved stability under near-neutral conditions but also demonstrated higher sensitivity and a broader linear range in the detection of hydrogen peroxide (20-4000 μM, LOD 5 μM) and ascorbic acid (10-2000 μM, LOD 3.9 μM). Besides, a smartphone-based platform was developed for detecting AA content in fruits, achieving a detection limit of 7.8 μM. Both UV-Vis spectrophotometry and smartphone-based colorimetry were validated with recovery rates of 95.1 %-106.7 % and 94.8 %-108.9 %, respectively. This study proposed a promising biosensor incorporating Cu-PBANZ for rapid colorimetric detection of AA in fruits using a smartphone.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"293 ","pages":"128152"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.128152","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Prussian blue analogue nanozymes (PBANZs) have been widely employed in the colorimetric detection of various organic small molecules due to their peroxidase-like activity. However, the practical applications of PBANZ are limited by its narrow operating pH range, insufficient catalytic activity, and poor stability. In this study, we synthesized a novel Cu2Fe(CN)6@PVP PBA nanozyme (Cu-PBANZ) using polyvinylpyrrolidone (PVP) as a capping ligand. This novel Cu-PBANZ not only exhibited enhanced peroxidase-like activity and improved stability under near-neutral conditions but also demonstrated higher sensitivity and a broader linear range in the detection of hydrogen peroxide (20-4000 μM, LOD 5 μM) and ascorbic acid (10-2000 μM, LOD 3.9 μM). Besides, a smartphone-based platform was developed for detecting AA content in fruits, achieving a detection limit of 7.8 μM. Both UV-Vis spectrophotometry and smartphone-based colorimetry were validated with recovery rates of 95.1 %-106.7 % and 94.8 %-108.9 %, respectively. This study proposed a promising biosensor incorporating Cu-PBANZ for rapid colorimetric detection of AA in fruits using a smartphone.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.