{"title":"Semantic Arithmetic Coding Using Synonymous Mappings.","authors":"Zijian Liang, Kai Niu, Jin Xu, Ping Zhang","doi":"10.3390/e27040429","DOIUrl":null,"url":null,"abstract":"<p><p>Recent semantic communication methods explore effective ways to expand the communication paradigm and improve the performance of communication systems. Nonetheless, a common problem with these methods is that the essence of semantics is not explicitly pointed out and directly utilized. A new epistemology suggests that synonymity, which is revealed as the fundamental feature of semantics, guides the establishment of semantic information theory from a novel viewpoint. Building on this theoretical basis, this paper proposes a semantic arithmetic coding (SAC) method for semantic lossless compression using intuitive synonymity. By constructing reasonable synonymous mappings and performing arithmetic coding procedures over synonymous sets, SAC can achieve higher compression efficiency for meaning-contained source sequences at the semantic level and approximate the semantic entropy limits. Experimental results on edge texture map compression show a significant improvement in coding efficiency using SAC without semantic losses compared to traditional arithmetic coding, demonstrating its effectiveness.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025560/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040429","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent semantic communication methods explore effective ways to expand the communication paradigm and improve the performance of communication systems. Nonetheless, a common problem with these methods is that the essence of semantics is not explicitly pointed out and directly utilized. A new epistemology suggests that synonymity, which is revealed as the fundamental feature of semantics, guides the establishment of semantic information theory from a novel viewpoint. Building on this theoretical basis, this paper proposes a semantic arithmetic coding (SAC) method for semantic lossless compression using intuitive synonymity. By constructing reasonable synonymous mappings and performing arithmetic coding procedures over synonymous sets, SAC can achieve higher compression efficiency for meaning-contained source sequences at the semantic level and approximate the semantic entropy limits. Experimental results on edge texture map compression show a significant improvement in coding efficiency using SAC without semantic losses compared to traditional arithmetic coding, demonstrating its effectiveness.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.