Christine Lansche, Ségolène Ladaigue, Giacomo Gropplero, Nicolas Zimmermann, Martin Nurmik, Irina Veith, Manh-Louis Nguyen, Solenn Brosseau, Nicolas Poté, Pierre Mordant, Arnaud Roussel, Fathia Mami-Chouaib, Fatima Mechta-Grigoriou, Gérard Zalcman, Fabrice Soncin, Stéphanie Descroix, Maria Carla Parrini
{"title":"Bioengineering a Patient-Derived Vascularized Lung Tumor-on-Chip Model to Decipher Immunomodulation by the Endothelium.","authors":"Christine Lansche, Ségolène Ladaigue, Giacomo Gropplero, Nicolas Zimmermann, Martin Nurmik, Irina Veith, Manh-Louis Nguyen, Solenn Brosseau, Nicolas Poté, Pierre Mordant, Arnaud Roussel, Fathia Mami-Chouaib, Fatima Mechta-Grigoriou, Gérard Zalcman, Fabrice Soncin, Stéphanie Descroix, Maria Carla Parrini","doi":"10.1002/adhm.202403446","DOIUrl":null,"url":null,"abstract":"<p><p>The endothelium compartment is a key player in tumor initiation and progression, but most existing tumor-on-chip models lack clinical relevance. Here, a 3D vascularized tumor-on-chip (vToC) model, generated with patient-derived microvascular endothelial cells (ECs) that are freshly isolated from surgical lung cancer samples, is presented. The microvessel molecular identity, morphology, and functionality are assessed by transcriptomic, immunofluorescence, TNF-α stimulation, and permeability assays. Lung cancer cells, cancer-associated fibroblasts (CAFs), and CD8+ tumor-infiltrating lymphocytes are embedded into the surrounding collagen matrix to partially recapitulate the lung tumor microenvironment (TME). The proof-of-concept of feasibility to generate personalized immunocompetent vToC composed of primary fully autologous cell types is provided. This vToC model is used to investigate the interplay between ECs and other TME cellular components by transcriptomic analysis. Using a rationally designed panel of endothelial genes, it is found that the presence of cancer cells and CAFs in the endothelial environment decreases expression by ECs of VCAM-1 leukocyte adhesion protein, a crucial regulator of immune infiltration, and of many immunomodulatory chemokines, recapitulating endothelial cell anergy. This in vitro model will be a valuable clinically-relevant tool to study the tumor-CAF-immune-endothelium interplay.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403446"},"PeriodicalIF":10.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403446","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The endothelium compartment is a key player in tumor initiation and progression, but most existing tumor-on-chip models lack clinical relevance. Here, a 3D vascularized tumor-on-chip (vToC) model, generated with patient-derived microvascular endothelial cells (ECs) that are freshly isolated from surgical lung cancer samples, is presented. The microvessel molecular identity, morphology, and functionality are assessed by transcriptomic, immunofluorescence, TNF-α stimulation, and permeability assays. Lung cancer cells, cancer-associated fibroblasts (CAFs), and CD8+ tumor-infiltrating lymphocytes are embedded into the surrounding collagen matrix to partially recapitulate the lung tumor microenvironment (TME). The proof-of-concept of feasibility to generate personalized immunocompetent vToC composed of primary fully autologous cell types is provided. This vToC model is used to investigate the interplay between ECs and other TME cellular components by transcriptomic analysis. Using a rationally designed panel of endothelial genes, it is found that the presence of cancer cells and CAFs in the endothelial environment decreases expression by ECs of VCAM-1 leukocyte adhesion protein, a crucial regulator of immune infiltration, and of many immunomodulatory chemokines, recapitulating endothelial cell anergy. This in vitro model will be a valuable clinically-relevant tool to study the tumor-CAF-immune-endothelium interplay.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.