Morphine Contributes to Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer Cells by Blocking COX-2 Methylation via Regulating the miR-23a-3p/DNMT3A Feedback.
Jian Cui, Nina Ma, Xiaohui Li, Xuexin Chen, Junxia Zhang, Wenjuan Zhang, Hong Li
{"title":"Morphine Contributes to Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer Cells by Blocking COX-2 Methylation via Regulating the miR-23a-3p/DNMT3A Feedback.","authors":"Jian Cui, Nina Ma, Xiaohui Li, Xuexin Chen, Junxia Zhang, Wenjuan Zhang, Hong Li","doi":"10.1007/s12013-025-01749-8","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the effects and mechanisms of morphine on epithelial-mesenchymal transformation (EMT) in triple-negative breast cancer (TNBC). The levels of miR-23a-3p, DNMT3A, and COX-2 in tumor tissues from metastatic TNBC patients treated with morphine were assessed using qRT-PCR. Functional assays assessed morphine's impact on TNBC cell malignancy. Dual luciferase reporter and RNA pull-down assays investigated the interaction between miR-23a-3p and DNMT3A. miR-23a-3p inhibitor and DNMT3A siRNA were transfected into TNBC cells. Protein expression was analyzed by Western blot. Methylation status of miR-23a-3p and COX-2 was assessed via methylation-specific PCR. Rescue experiments were performed to research whether morphine modulates EMT in TNBC through COX-2 methylation regulation via the miR-23a-3p/DNMT3A feedback loop. The effects of morphine on TNBC in nude mice xenotransplantation were studied. In metastatic TNBC patients treated with morphine, miR-23a-3p and COX-2 expression were elevated, and DNMT3A levels were reduced. In TNBC cells, morphine enhanced migration, invasion, and EMT, and suppressed apoptosis. It upregulated miR-23a-3p and COX-2; downregulated DNMT3A; and inhibited methylation of miR-23a-3p and COX-2. miR-23a-3p directly inhibited DNMT3A expression. In morphine-treated TNBC cells, silencing DNMT3A reduced methylation of miR-23a-3p and COX-2. miR-23a-3p inhibitor suppressed migration, invasion, and EMT, and promoted apoptosis; however, these effects were reversed by DNMT3A silencing. In vivo, morphine promoted tumor EMT and metastasis in TNBC; reduced miR-23a-3p and COX-2 methylation; and decreased DNMT3A expression. Morphine accelerated EMT in TNBC by inhibiting COX-2 methylation through the miR-23a-3p/DNMT3A loop.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01749-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the effects and mechanisms of morphine on epithelial-mesenchymal transformation (EMT) in triple-negative breast cancer (TNBC). The levels of miR-23a-3p, DNMT3A, and COX-2 in tumor tissues from metastatic TNBC patients treated with morphine were assessed using qRT-PCR. Functional assays assessed morphine's impact on TNBC cell malignancy. Dual luciferase reporter and RNA pull-down assays investigated the interaction between miR-23a-3p and DNMT3A. miR-23a-3p inhibitor and DNMT3A siRNA were transfected into TNBC cells. Protein expression was analyzed by Western blot. Methylation status of miR-23a-3p and COX-2 was assessed via methylation-specific PCR. Rescue experiments were performed to research whether morphine modulates EMT in TNBC through COX-2 methylation regulation via the miR-23a-3p/DNMT3A feedback loop. The effects of morphine on TNBC in nude mice xenotransplantation were studied. In metastatic TNBC patients treated with morphine, miR-23a-3p and COX-2 expression were elevated, and DNMT3A levels were reduced. In TNBC cells, morphine enhanced migration, invasion, and EMT, and suppressed apoptosis. It upregulated miR-23a-3p and COX-2; downregulated DNMT3A; and inhibited methylation of miR-23a-3p and COX-2. miR-23a-3p directly inhibited DNMT3A expression. In morphine-treated TNBC cells, silencing DNMT3A reduced methylation of miR-23a-3p and COX-2. miR-23a-3p inhibitor suppressed migration, invasion, and EMT, and promoted apoptosis; however, these effects were reversed by DNMT3A silencing. In vivo, morphine promoted tumor EMT and metastasis in TNBC; reduced miR-23a-3p and COX-2 methylation; and decreased DNMT3A expression. Morphine accelerated EMT in TNBC by inhibiting COX-2 methylation through the miR-23a-3p/DNMT3A loop.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.