Molecular Mechanism of Notch Signaling and Macrophages in Deep Vein Thrombosis: A Comprehensive Review.

IF 2.5 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sisira Joy, Anusha Prasannan, Kaliyamurthi Venkatachalam, Ambika Binesh
{"title":"Molecular Mechanism of Notch Signaling and Macrophages in Deep Vein Thrombosis: A Comprehensive Review.","authors":"Sisira Joy, Anusha Prasannan, Kaliyamurthi Venkatachalam, Ambika Binesh","doi":"10.1007/s12013-025-01761-y","DOIUrl":null,"url":null,"abstract":"<p><p>Deep vein thrombosis is an acute medical condition, and the molecular basis of this etiology will be crucial in the discovery of more advanced therapies. This review has focused at the Notch signaling pathway, which plays a significant role in different physiological activities such as homeostasis, development, and disease. Also, reveal macrophage function in inflammation and thrombosis in depth, with a focus on their polarization and interaction with the endothelium during thrombosis. In this context, some essential cellular and molecular mechanisms relevant to thrombus pathogenesis, DVT aetiology and risk factors, as well as elements and composition of the Notch pathway, are covered in the end, with a focus on elements that distinguish canonical from non-canonical signaling pathways and their biological relevance to macrophages. Notch signaling has been shown to influence macrophage activation and polarization, influencing their function in thrombosis breakdown and resolution. This interplay between Notch signaling and macrophages may reveal possible treatment targets for DVT. Discuss the physiological role of Notch signaling in vascular biology, as well as how it contributes to thrombosis. The difficulties in implementing these discoveries in clinical practice are discussed, along with the status of ongoing clinical trials and experimental investigations focussing on macrophage-directed treatments and Notch inhibitors. These molecular insights synthesis provides a basis for the creation of novel strategies for the efficient management of DVT.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01761-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep vein thrombosis is an acute medical condition, and the molecular basis of this etiology will be crucial in the discovery of more advanced therapies. This review has focused at the Notch signaling pathway, which plays a significant role in different physiological activities such as homeostasis, development, and disease. Also, reveal macrophage function in inflammation and thrombosis in depth, with a focus on their polarization and interaction with the endothelium during thrombosis. In this context, some essential cellular and molecular mechanisms relevant to thrombus pathogenesis, DVT aetiology and risk factors, as well as elements and composition of the Notch pathway, are covered in the end, with a focus on elements that distinguish canonical from non-canonical signaling pathways and their biological relevance to macrophages. Notch signaling has been shown to influence macrophage activation and polarization, influencing their function in thrombosis breakdown and resolution. This interplay between Notch signaling and macrophages may reveal possible treatment targets for DVT. Discuss the physiological role of Notch signaling in vascular biology, as well as how it contributes to thrombosis. The difficulties in implementing these discoveries in clinical practice are discussed, along with the status of ongoing clinical trials and experimental investigations focussing on macrophage-directed treatments and Notch inhibitors. These molecular insights synthesis provides a basis for the creation of novel strategies for the efficient management of DVT.

Notch信号和巨噬细胞在深静脉血栓形成中的分子机制综述
深静脉血栓形成是一种急性疾病,其病因的分子基础对发现更先进的治疗方法至关重要。本文就Notch信号通路在体内平衡、发育和疾病等生理活动中发挥重要作用进行综述。深入揭示巨噬细胞在炎症和血栓形成中的功能,重点研究它们在血栓形成过程中的极化和与内皮细胞的相互作用。在此背景下,本文最后涵盖了与血栓发病机制、DVT病因和危险因素相关的一些基本细胞和分子机制,以及Notch通路的元件和组成,重点介绍了区分典型和非典型信号通路的元件及其与巨噬细胞的生物学相关性。Notch信号已被证明影响巨噬细胞的激活和极化,影响其在血栓分解和消退中的功能。Notch信号和巨噬细胞之间的相互作用可能揭示DVT可能的治疗靶点。讨论Notch信号在血管生物学中的生理作用,以及它如何促进血栓形成。讨论了在临床实践中实施这些发现的困难,以及正在进行的临床试验和实验研究的现状,重点是巨噬细胞导向治疗和Notch抑制剂。这些分子见解合成为创建有效管理DVT的新策略提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信