{"title":"Measurement-Induced Symmetry Restoration and Quantum Mpemba Effect.","authors":"Giuseppe Di Giulio, Xhek Turkeshi, Sara Murciano","doi":"10.3390/e27040407","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring a quantum system can profoundly alter its dynamical properties, leading to non-trivial emergent phenomena. In this work, we demonstrate that dynamical measurements strongly influence the evolution of symmetry in many-body quantum systems. Specifically, we demonstrate that monitored systems governed by non-Hermitian dynamics exhibit a quantum Mpemba effect, where systems with stronger initial asymmetry relax faster to a symmetric state. Crucially, this phenomenon is purely measurement-induced: in the absence of measurements, we find states where the corresponding unitary evolution does not display any Mpemba effect. Furthermore, we uncover a novel measurement-induced symmetry restoration mechanism: below a critical measurement rate, the symmetry remains broken, but beyond a threshold, it is fully restored in the thermodynamic limit-along with the emergence of the quantum Mpemba effect.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025803/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040407","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring a quantum system can profoundly alter its dynamical properties, leading to non-trivial emergent phenomena. In this work, we demonstrate that dynamical measurements strongly influence the evolution of symmetry in many-body quantum systems. Specifically, we demonstrate that monitored systems governed by non-Hermitian dynamics exhibit a quantum Mpemba effect, where systems with stronger initial asymmetry relax faster to a symmetric state. Crucially, this phenomenon is purely measurement-induced: in the absence of measurements, we find states where the corresponding unitary evolution does not display any Mpemba effect. Furthermore, we uncover a novel measurement-induced symmetry restoration mechanism: below a critical measurement rate, the symmetry remains broken, but beyond a threshold, it is fully restored in the thermodynamic limit-along with the emergence of the quantum Mpemba effect.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.