Junhan Xie, Di Li, Haozheng Li, Bo Peng, Qinye Bao, Jiaming Jiang, Bo Li, Weimin Liu
{"title":"Surface and Bulk Defect Passivation in MAPbI3 Perovskites with Daminozide: Effects on Carrier Dynamics and Mobility","authors":"Junhan Xie, Di Li, Haozheng Li, Bo Peng, Qinye Bao, Jiaming Jiang, Bo Li, Weimin Liu","doi":"10.1002/advs.202500530","DOIUrl":null,"url":null,"abstract":"<p>Metal halide perovskite semiconductors are highly valued for their outstanding optoelectronic properties. However, the high density of intrinsic defect states in their polycrystalline thin films on the surface and within the bulk poses a significant challenge by diminishing carrier mobility and lifetime, thus hindering device performance. This study reveals a previously unidentified mid-IR emissive trapping state in MAPbI<sub>3</sub> that differs from conventional Shockley-Read-Hall (SRH) defects, exhibiting unique surface-localized characteristics detectable through transient mid-IR spectroscopy. A dual-function passivation strategy using daminozide (DA) is developed, where the interlayer selectively passivates mid-IR-active surface defects while the additive mitigates bulk SRH defects through carbonyl-Pb<sup>2</sup>⁺ coordination. This passivation strategy yields remarkable improvements in carrier dynamics, increasing diffusion constants from 0.135 to 0.165 cm<sup>2</sup> s⁻¹ and significantly enhancing the device performance, including open-circuit voltage and power conversion efficiency. These findings highlight the crucial importance of addressing both surface and bulk defects to optimize the optoelectronic properties of perovskites.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 23","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202500530","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202500530","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal halide perovskite semiconductors are highly valued for their outstanding optoelectronic properties. However, the high density of intrinsic defect states in their polycrystalline thin films on the surface and within the bulk poses a significant challenge by diminishing carrier mobility and lifetime, thus hindering device performance. This study reveals a previously unidentified mid-IR emissive trapping state in MAPbI3 that differs from conventional Shockley-Read-Hall (SRH) defects, exhibiting unique surface-localized characteristics detectable through transient mid-IR spectroscopy. A dual-function passivation strategy using daminozide (DA) is developed, where the interlayer selectively passivates mid-IR-active surface defects while the additive mitigates bulk SRH defects through carbonyl-Pb2⁺ coordination. This passivation strategy yields remarkable improvements in carrier dynamics, increasing diffusion constants from 0.135 to 0.165 cm2 s⁻¹ and significantly enhancing the device performance, including open-circuit voltage and power conversion efficiency. These findings highlight the crucial importance of addressing both surface and bulk defects to optimize the optoelectronic properties of perovskites.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.