Fatemeh Atashgar, Mehdi Shafieian, Nabiollah Abolfathi
{"title":"From structure to mechanics: exploring the role of axons and interconnections in anisotropic behavior of brain white matter.","authors":"Fatemeh Atashgar, Mehdi Shafieian, Nabiollah Abolfathi","doi":"10.1007/s10237-025-01957-4","DOIUrl":null,"url":null,"abstract":"<p><p>According to various experimental studies, the role of axons in the brain's white matter (WM) is still a subject of debate: Is the role of axons in brain white matter (WM) limited to their functional significance, or do they also play a pivotal mechanical role in defining its anisotropic behavior? Micromechanics and computational models provide valuable tools for scientists to comprehend the underlying mechanisms of tissue behavior, taking into account the contribution of microstructures. In this review, we delve into the consideration of strain level, strain rates, and injury threshold to determine when WM should be regarded as anisotropic, as well as when the assumption of isotropy can be deemed acceptable. Additionally, we emphasize the potential mechanical significance of interconnections between glial cells-axons and glial cells-vessels. Moreover, we elucidate the directionality of WM stiffness under various loading conditions and define the possible roles of microstructural components in each scenario. Ultimately, this review aims to shed light on the significant mechanical contributions of axons in conjunction with glial cells, paving the way for the development of future multiscale models capable of predicting injuries and facilitating the discovery of applicable treatments.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-01957-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
According to various experimental studies, the role of axons in the brain's white matter (WM) is still a subject of debate: Is the role of axons in brain white matter (WM) limited to their functional significance, or do they also play a pivotal mechanical role in defining its anisotropic behavior? Micromechanics and computational models provide valuable tools for scientists to comprehend the underlying mechanisms of tissue behavior, taking into account the contribution of microstructures. In this review, we delve into the consideration of strain level, strain rates, and injury threshold to determine when WM should be regarded as anisotropic, as well as when the assumption of isotropy can be deemed acceptable. Additionally, we emphasize the potential mechanical significance of interconnections between glial cells-axons and glial cells-vessels. Moreover, we elucidate the directionality of WM stiffness under various loading conditions and define the possible roles of microstructural components in each scenario. Ultimately, this review aims to shed light on the significant mechanical contributions of axons in conjunction with glial cells, paving the way for the development of future multiscale models capable of predicting injuries and facilitating the discovery of applicable treatments.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.