Peripheral blood cytokine profiles predict the severity of SARS-CoV-2 infection: an EPIC3 study analysis.

IF 3.4 3区 医学 Q2 INFECTIOUS DISEASES
Xumin Li, Vivek Pakanati, Cindy Liu, Tracy Wang, Daniel Morelli, Anna Korpak, Aaron Baraff, Stuart N Isaacs, Amy Vittor, Kyong-Mi Chang, Elizabeth Le, Nicholas L Smith, Jennifer S Lee, Jennifer M Ross, Javeed A Shah
{"title":"Peripheral blood cytokine profiles predict the severity of SARS-CoV-2 infection: an EPIC<sup>3</sup> study analysis.","authors":"Xumin Li, Vivek Pakanati, Cindy Liu, Tracy Wang, Daniel Morelli, Anna Korpak, Aaron Baraff, Stuart N Isaacs, Amy Vittor, Kyong-Mi Chang, Elizabeth Le, Nicholas L Smith, Jennifer S Lee, Jennifer M Ross, Javeed A Shah","doi":"10.1186/s12879-025-10914-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Predicting which patients will develop severe COVID-19 complications could improve clinical care. Peripheral blood cytokine profiles may predict the severity of SARS-CoV-2 infection, but none have been identified in US Veterans.</p><p><strong>Methods: </strong>We analyzed peripheral blood cytokine profiles from 202 participants in the EPIC<sup>3</sup> study, a prospective observational cohort of US Veterans tested for SARS-CoV-2 across 15 VA medical centers. Illness severity was assessed based on the highest level documented during the first 60 days after recruitment. We correlated cytokine levels with illness severity using LASSO logistic regression, random forest, and XGBoost models on a 70% training set and calculated the AUC on a 30% test set.</p><p><strong>Results: </strong>LASSO regression identified 6 cytokines as predictors of SARS-CoV-2 severity with 77.3% AUC in the test set. Random forest and XGBoost models achieved an AUC of 80.4% and 80.7% in the test set, respectively. All models assigned a feature importance to each cytokine, with IP-10, MCP-1, and HGF consistently identified as key markers.</p><p><strong>Conclusions: </strong>Cytokine profiles are predictive of SARS-CoV-2 severity in US Veterans and may guide tailored interventions for improved patient management.</p>","PeriodicalId":8981,"journal":{"name":"BMC Infectious Diseases","volume":"25 1","pages":"677"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12879-025-10914-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Predicting which patients will develop severe COVID-19 complications could improve clinical care. Peripheral blood cytokine profiles may predict the severity of SARS-CoV-2 infection, but none have been identified in US Veterans.

Methods: We analyzed peripheral blood cytokine profiles from 202 participants in the EPIC3 study, a prospective observational cohort of US Veterans tested for SARS-CoV-2 across 15 VA medical centers. Illness severity was assessed based on the highest level documented during the first 60 days after recruitment. We correlated cytokine levels with illness severity using LASSO logistic regression, random forest, and XGBoost models on a 70% training set and calculated the AUC on a 30% test set.

Results: LASSO regression identified 6 cytokines as predictors of SARS-CoV-2 severity with 77.3% AUC in the test set. Random forest and XGBoost models achieved an AUC of 80.4% and 80.7% in the test set, respectively. All models assigned a feature importance to each cytokine, with IP-10, MCP-1, and HGF consistently identified as key markers.

Conclusions: Cytokine profiles are predictive of SARS-CoV-2 severity in US Veterans and may guide tailored interventions for improved patient management.

外周血细胞因子谱预测SARS-CoV-2感染的严重程度:一项EPIC3研究分析
背景:预测哪些患者会出现严重的COVID-19并发症可以改善临床护理。外周血细胞因子谱可以预测SARS-CoV-2感染的严重程度,但尚未在美国退伍军人中发现。方法:我们分析了EPIC3研究中202名参与者的外周血细胞因子谱,这是一项前瞻性观察队列,在15个VA医疗中心对美国退伍军人进行了SARS-CoV-2检测。疾病严重程度根据招募后最初60天记录的最高水平进行评估。我们在70%的训练集上使用LASSO逻辑回归、随机森林和XGBoost模型将细胞因子水平与疾病严重程度关联起来,并在30%的测试集上计算AUC。结果:LASSO回归鉴定出6种细胞因子可作为SARS-CoV-2严重程度的预测因子,在测试集中AUC为77.3%。随机森林模型和XGBoost模型在测试集中的AUC分别达到80.4%和80.7%。所有模型都为每个细胞因子分配了一个特征重要性,IP-10、MCP-1和HGF一致被确定为关键标志物。结论:细胞因子谱可预测美国退伍军人的SARS-CoV-2严重程度,并可指导有针对性的干预措施,以改善患者管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Infectious Diseases
BMC Infectious Diseases 医学-传染病学
CiteScore
6.50
自引率
0.00%
发文量
860
审稿时长
3.3 months
期刊介绍: BMC Infectious Diseases is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of infectious and sexually transmitted diseases in humans, as well as related molecular genetics, pathophysiology, and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信