Lignocellulose-Derived Energy Materials and Chemicals: A Review on Synthesis Pathways and Machine Learning Applications.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Luyao Wang, Shuling Liu, Sehrish Mehdi, Yanyan Liu, Huanhuan Zhang, Ruofan Shen, Hao Wen, Jianchun Jiang, Kang Sun, Baojun Li
{"title":"Lignocellulose-Derived Energy Materials and Chemicals: A Review on Synthesis Pathways and Machine Learning Applications.","authors":"Luyao Wang, Shuling Liu, Sehrish Mehdi, Yanyan Liu, Huanhuan Zhang, Ruofan Shen, Hao Wen, Jianchun Jiang, Kang Sun, Baojun Li","doi":"10.1002/smtd.202500372","DOIUrl":null,"url":null,"abstract":"<p><p>Lignocellulose biomass, Earth's most abundant renewable resource, is crucial for sustainable production of high-value chemicals and bioengineered materials, especially for energy storage. Efficient pretreatment is vital to boost lignocellulose conversion to bioenergy and biomaterials, cut costs, and broaden its energy-sector applications. Machine learning (ML) has become a key tool in this field, optimizing pretreatment processes, improving decision-making, and driving innovation in lignocellulose valorization for energy storage. This review explores main pretreatment strategies - physical, chemical, physicochemical, biological, and integrated methods - evaluating their pros and cons for energy storage. It also stresses ML's role in refining these processes, supported by case studies showing its effectiveness. The review examines challenges and opportunities of integrating ML into lignocellulose pretreatment for energy storage, underlining pretreatment's importance in unlocking lignocellulose's full potential. By blending process knowledge with advanced computational techniques, this work aims to spur progress toward a sustainable, circular bioeconomy, particularly in energy storage solutions.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500372"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500372","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lignocellulose biomass, Earth's most abundant renewable resource, is crucial for sustainable production of high-value chemicals and bioengineered materials, especially for energy storage. Efficient pretreatment is vital to boost lignocellulose conversion to bioenergy and biomaterials, cut costs, and broaden its energy-sector applications. Machine learning (ML) has become a key tool in this field, optimizing pretreatment processes, improving decision-making, and driving innovation in lignocellulose valorization for energy storage. This review explores main pretreatment strategies - physical, chemical, physicochemical, biological, and integrated methods - evaluating their pros and cons for energy storage. It also stresses ML's role in refining these processes, supported by case studies showing its effectiveness. The review examines challenges and opportunities of integrating ML into lignocellulose pretreatment for energy storage, underlining pretreatment's importance in unlocking lignocellulose's full potential. By blending process knowledge with advanced computational techniques, this work aims to spur progress toward a sustainable, circular bioeconomy, particularly in energy storage solutions.

木质纤维素衍生能源材料和化学品:合成途径和机器学习应用综述。
木质纤维素生物质是地球上最丰富的可再生资源,对高价值化学品和生物工程材料的可持续生产至关重要,特别是在能源储存方面。有效的预处理对于促进木质纤维素转化为生物能源和生物材料、降低成本和扩大其能源部门的应用至关重要。机器学习(ML)已成为该领域的关键工具,可以优化预处理过程,改进决策,并推动木质纤维素储能增值的创新。本文综述了主要的预处理策略,包括物理、化学、物理化学、生物和综合方法,并评价了它们在储能中的优缺点。它还强调了机器学习在改进这些过程中的作用,并通过案例研究来证明其有效性。这篇综述探讨了将ML整合到木质纤维素预处理中用于储能的挑战和机遇,强调了预处理在释放木质纤维素全部潜力方面的重要性。通过将工艺知识与先进的计算技术相结合,这项工作旨在促进可持续的循环生物经济的发展,特别是在能源存储解决方案方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信