Zohre Mozduri, Graham Plastow, Jack Dekkers, Kerry Houlahan, Robert Kemp, Manuel Juárez
{"title":"Genome-Wide Association Study for Belly Traits in Canadian Commercial Crossbred Pigs.","authors":"Zohre Mozduri, Graham Plastow, Jack Dekkers, Kerry Houlahan, Robert Kemp, Manuel Juárez","doi":"10.3390/ani15091254","DOIUrl":null,"url":null,"abstract":"<p><p>The improvement of carcass traits is a key focus in pig genetic breeding programs. To identify quantitative trait loci (QTLs) and genes linked to key carcass traits, we conducted a genome-wide association study (GWAS) using whole-genome sequencing data from 1118 commercial pigs (Duroc sires and Yorkshire/Landrace F1 dams). This study focused on six phenotypes: iodine value, belly firmness, belly side fat, total side thickness (belly SThK), belly subcutaneous fat (Subq), and belly seam. Phenotypes were measured using image analysis, DEXA, and fatty acid profiling, and genotyping was performed using low-pass sequencing (SkimSeq). After quality control, 18,911,793 single nucleotide polymorphisms (SNPs) were retained for further analysis. A GWAS was conducted using a linear mixed model implemented in GCTA. Key findings include a significant QTL on SSC15 (110.83-112.23 Mb), which is associated with the iodine value, containing genes such as <i>COX15</i>, <i>CHUK</i>, <i>SCD</i>, and <i>HIF1AN</i>, which have known roles in fatty acid metabolism. Additionally, <i>PNKD</i>, <i>VIL1</i>, and <i>PRKAG3</i> (120.74-121.88 Mb on SSC15) were linked to belly firmness, influencing muscle structure and fat composition. Three QTLs for belly side fat were identified on SSC1, SSC2, and SSC3, highlighting genes like <i>SLC22A18</i>, <i>PHLDA2</i>, and <i>OSBPL5</i>, which regulate fat deposition and lipid metabolism. The results provide novel molecular markers that can be incorporated into selective breeding programs to improve pork quality, fat distribution, and meat composition. These findings enhance our understanding of the genetic mechanisms underlying carcass belly traits while offering tools to improve pork quality, optimize fat composition, and align with consumer preferences in the meat production industry.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071171/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15091254","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The improvement of carcass traits is a key focus in pig genetic breeding programs. To identify quantitative trait loci (QTLs) and genes linked to key carcass traits, we conducted a genome-wide association study (GWAS) using whole-genome sequencing data from 1118 commercial pigs (Duroc sires and Yorkshire/Landrace F1 dams). This study focused on six phenotypes: iodine value, belly firmness, belly side fat, total side thickness (belly SThK), belly subcutaneous fat (Subq), and belly seam. Phenotypes were measured using image analysis, DEXA, and fatty acid profiling, and genotyping was performed using low-pass sequencing (SkimSeq). After quality control, 18,911,793 single nucleotide polymorphisms (SNPs) were retained for further analysis. A GWAS was conducted using a linear mixed model implemented in GCTA. Key findings include a significant QTL on SSC15 (110.83-112.23 Mb), which is associated with the iodine value, containing genes such as COX15, CHUK, SCD, and HIF1AN, which have known roles in fatty acid metabolism. Additionally, PNKD, VIL1, and PRKAG3 (120.74-121.88 Mb on SSC15) were linked to belly firmness, influencing muscle structure and fat composition. Three QTLs for belly side fat were identified on SSC1, SSC2, and SSC3, highlighting genes like SLC22A18, PHLDA2, and OSBPL5, which regulate fat deposition and lipid metabolism. The results provide novel molecular markers that can be incorporated into selective breeding programs to improve pork quality, fat distribution, and meat composition. These findings enhance our understanding of the genetic mechanisms underlying carcass belly traits while offering tools to improve pork quality, optimize fat composition, and align with consumer preferences in the meat production industry.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).