Shaochun Zhang, Ye Wang, Xuesong Xiong, Jili Xing, Ke Jing
{"title":"Mechanistic Insights into Hippo-YAP Pathway Activation for Enhanced DFU Healing.","authors":"Shaochun Zhang, Ye Wang, Xuesong Xiong, Jili Xing, Ke Jing","doi":"10.1152/ajpcell.01067.2024","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing prevalence of diabetes, diabetic foot ulcers (DFU) have become a global health challenge, significantly impacting patients' quality of life and placing a substantial burden on healthcare systems. Among various immune cell subsets, M2-polarized macrophages play a pivotal role in tissue repair and inflammation resolution. This study employs single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing to comprehensively investigate the role of the TFAP2A-LIFR-Hippo-YAP signaling axis in regulating macrophage M2 polarization and its critical function in DFU wound healing. Through scRNA-seq analysis, we identified nine major immune cell subsets in DFU samples, with macrophages emerging as key regulatory cells. In vitro experiments further confirmed that TFAP2A promotes macrophage M2 polarization (evidenced by increased expression of the M2 marker ARG1) and ameliorates endothelial dysfunction by enhancing tube formation, improving migration capacity, and upregulating relevant proteins such as VCAM-1. Moreover, TFAP2A serves as a central regulatory gene for macrophage function in DFU by upregulating LIFR expression and activating the Hippo-YAP signaling pathway, thereby inducing M2 polarization and mitigating endothelial dysfunction. Mouse model experiments further demonstrated that the TFAP2A-LIFR-Hippo-YAP signaling axis accelerates DFU wound healing through the induction of macrophage M2 polarization. This study unveils a novel immunoregulatory role of TFAP2A in DFU and provides a promising therapeutic target for the treatment of chronic diabetic wounds.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.01067.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing prevalence of diabetes, diabetic foot ulcers (DFU) have become a global health challenge, significantly impacting patients' quality of life and placing a substantial burden on healthcare systems. Among various immune cell subsets, M2-polarized macrophages play a pivotal role in tissue repair and inflammation resolution. This study employs single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing to comprehensively investigate the role of the TFAP2A-LIFR-Hippo-YAP signaling axis in regulating macrophage M2 polarization and its critical function in DFU wound healing. Through scRNA-seq analysis, we identified nine major immune cell subsets in DFU samples, with macrophages emerging as key regulatory cells. In vitro experiments further confirmed that TFAP2A promotes macrophage M2 polarization (evidenced by increased expression of the M2 marker ARG1) and ameliorates endothelial dysfunction by enhancing tube formation, improving migration capacity, and upregulating relevant proteins such as VCAM-1. Moreover, TFAP2A serves as a central regulatory gene for macrophage function in DFU by upregulating LIFR expression and activating the Hippo-YAP signaling pathway, thereby inducing M2 polarization and mitigating endothelial dysfunction. Mouse model experiments further demonstrated that the TFAP2A-LIFR-Hippo-YAP signaling axis accelerates DFU wound healing through the induction of macrophage M2 polarization. This study unveils a novel immunoregulatory role of TFAP2A in DFU and provides a promising therapeutic target for the treatment of chronic diabetic wounds.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.