Chloride-Mediated Transformation of Copper Nanoparticles to Nanosponges for Nitric Acid Reduction at Low Concentrations.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-05-12 DOI:10.1002/cssc.202500581
Ke-Xin Li, Yu-Shu Han, Lei Bian, Hao Tian, Jia-Yi Chen, Zhi Ma, Zhong-Li Wang
{"title":"Chloride-Mediated Transformation of Copper Nanoparticles to Nanosponges for Nitric Acid Reduction at Low Concentrations.","authors":"Ke-Xin Li, Yu-Shu Han, Lei Bian, Hao Tian, Jia-Yi Chen, Zhi Ma, Zhong-Li Wang","doi":"10.1002/cssc.202500581","DOIUrl":null,"url":null,"abstract":"<p><p>Acidic nitrate electroreduction reaction (NO<sub>3</sub> <sup>-</sup>RR) offers a promising route for a sustainable nitrogen cycle. However, achieving high selectivity and efficiency under low-concentration acidic conditions remains challenging. Herein, it is demonstrated that Cu nanosponge can adsorb low-concentration nitric acid (HNO<sub>3</sub>) and efficiently convert it to ammonia (NH<sub>3</sub>). The Cu nanosponge is prepared by Cl<sup>-</sup>-induced reconstruction of porous Cu nanoparticles obtained through dealloying. In a Cl<sup>-</sup>-containing HNO<sub>3</sub> solution, porous Cu nanoparticles undergo chemical oxidation to form CuCl, which reconstructs into a nanosponge through migration and electrochemical reduction, consisting of nanoparticle-supported nanosheets. The nanosponge features abundant porous structures and numerous nanoparticle-nanosheet interfaces, creating a large active surface area and providing adsorption and reaction sites for NO<sub>3</sub> <sup>-</sup>. The optimized Cu nanosponge exhibits a 92% FE for NH<sub>3</sub> at -0.4 V versus RHE and 90% yield of NH<sub>3</sub> in 0.03 M HNO<sub>3</sub>, significantly outperforming Cu nanoparticle (only 66 and 47%). In situ Raman spectroscopy confirms that the nanosponge structure not only enhances NO<sub>3</sub> <sup>-</sup> adsorption but also stabilizes the key NO<sub>2</sub> <sup>-</sup> intermediate. Furthermore, industrial wastewater is simulated to convert low concentrations of nitrate into ammonium nitrate products, which are applied to plant cultivation, effectively promoting plant growth.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500581"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500581","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Acidic nitrate electroreduction reaction (NO3 -RR) offers a promising route for a sustainable nitrogen cycle. However, achieving high selectivity and efficiency under low-concentration acidic conditions remains challenging. Herein, it is demonstrated that Cu nanosponge can adsorb low-concentration nitric acid (HNO3) and efficiently convert it to ammonia (NH3). The Cu nanosponge is prepared by Cl--induced reconstruction of porous Cu nanoparticles obtained through dealloying. In a Cl--containing HNO3 solution, porous Cu nanoparticles undergo chemical oxidation to form CuCl, which reconstructs into a nanosponge through migration and electrochemical reduction, consisting of nanoparticle-supported nanosheets. The nanosponge features abundant porous structures and numerous nanoparticle-nanosheet interfaces, creating a large active surface area and providing adsorption and reaction sites for NO3 -. The optimized Cu nanosponge exhibits a 92% FE for NH3 at -0.4 V versus RHE and 90% yield of NH3 in 0.03 M HNO3, significantly outperforming Cu nanoparticle (only 66 and 47%). In situ Raman spectroscopy confirms that the nanosponge structure not only enhances NO3 - adsorption but also stabilizes the key NO2 - intermediate. Furthermore, industrial wastewater is simulated to convert low concentrations of nitrate into ammonium nitrate products, which are applied to plant cultivation, effectively promoting plant growth.

氯离子介导的铜纳米颗粒转化为纳米海绵用于低浓度硝酸还原。
酸性硝酸电还原反应(NO3-RR)为氮的可持续循环提供了一条有前景的途径。然而,在低浓度酸性条件下实现高选择性和高效率仍然是一个挑战。在此,我们证明了Cu纳米海绵可以吸附低浓度的硝酸(HNO3)并有效地将其转化为氨(NH3)。采用氯化还原法制备了铜纳米海绵。在含Cl- HNO3溶液中,多孔Cu纳米颗粒经过化学氧化形成CuCl, CuCl通过迁移和电化学还原重建成纳米海绵,由纳米颗粒支撑的纳米片组成。纳米海绵具有丰富的多孔结构和众多的纳米颗粒-纳米片界面,创造了大的活性表面积,为NO3-提供了吸附和反应场所。与RHE相比,优化后的Cu纳米海绵在-0.4 V条件下NH3的FE为92%,在0.03 M HNO3条件下NH3的产率为90%,显著优于Cu纳米颗粒(分别为66%和47%)。原位拉曼光谱证实了纳米海绵结构不仅增强了NO3-吸附,而且稳定了关键的NO2-中间体。此外,我们模拟工业废水,将低浓度的硝酸盐转化为硝酸铵产品,应用于植物栽培,有效促进植物生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信