NMR chemical shift assignment of the IMLV methyl groups of a di-domain of the Tomaymycin non-ribosomal peptide synthetase.

IF 0.8 4区 生物学 Q4 BIOPHYSICS
John P Kirkpatrick, Megha N Karanth, Teresa Carlomagno
{"title":"NMR chemical shift assignment of the IMLV methyl groups of a di-domain of the Tomaymycin non-ribosomal peptide synthetase.","authors":"John P Kirkpatrick, Megha N Karanth, Teresa Carlomagno","doi":"10.1007/s12104-025-10231-8","DOIUrl":null,"url":null,"abstract":"<p><p>Non-ribosomal peptide synthetases (NRPSs) are macromolecular enzymatic complexes responsible for the biosynthesis of an array of microbial natural products, many of which have important applications for human health. The nature of the NRPS machinery, which has been likened to an assembly line, should be amenable to bio-engineering efforts directed towards efficient synthesis of novel and tailored molecules. However, the success of such endeavours depends on a detailed understanding of the mechanistic principles governing the various steps in the peptide assembly-line. Here, we report the near-complete assignment of the Ile, Met, Leu and Val methyl-groups of the 59-kDa adaptor-condensation di-domain (BN-BC) from the Tomaymycin NRPS. These assignments will provide the foundation for future NMR studies of the complex dynamic behaviour of the condensation domain both in isolation and in the context of the enzymatic cycle, which will themselves form the basis for developing a complete mechanistic description of the central condensation reaction in this prototypical NRPS.</p>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12104-025-10231-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Non-ribosomal peptide synthetases (NRPSs) are macromolecular enzymatic complexes responsible for the biosynthesis of an array of microbial natural products, many of which have important applications for human health. The nature of the NRPS machinery, which has been likened to an assembly line, should be amenable to bio-engineering efforts directed towards efficient synthesis of novel and tailored molecules. However, the success of such endeavours depends on a detailed understanding of the mechanistic principles governing the various steps in the peptide assembly-line. Here, we report the near-complete assignment of the Ile, Met, Leu and Val methyl-groups of the 59-kDa adaptor-condensation di-domain (BN-BC) from the Tomaymycin NRPS. These assignments will provide the foundation for future NMR studies of the complex dynamic behaviour of the condensation domain both in isolation and in the context of the enzymatic cycle, which will themselves form the basis for developing a complete mechanistic description of the central condensation reaction in this prototypical NRPS.

托马霉素非核糖体肽合成酶双结构域的IMLV甲基核磁共振化学移位分配。
非核糖体肽合成酶(NRPSs)是一种大分子酶复合物,负责一系列微生物天然产物的生物合成,其中许多对人类健康具有重要应用。NRPS机制的性质,被比作装配线,应该适应生物工程的努力,以有效地合成新的和定制的分子。然而,这种努力的成功取决于对控制肽装配线中各个步骤的机械原理的详细理解。在这里,我们报道了托马霉素NRPS中59-kDa接头缩合二结构域(BN-BC)的Ile、Met、Leu和Val甲基的几乎完整定位。这些作业将为未来的核磁共振研究提供基础,这些核磁共振研究将在分离和酶循环的背景下对缩合域的复杂动态行为进行研究,这些研究本身将形成对该原型NRPS中中心缩合反应的完整机制描述的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecular NMR Assignments
Biomolecular NMR Assignments 生物-光谱学
CiteScore
1.70
自引率
11.10%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties. Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信