Glycerol-Based Polymer to Improve the Cellular Uptake of Liposomes.

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomacromolecules Pub Date : 2025-05-12 Epub Date: 2025-04-21 DOI:10.1021/acs.biomac.4c01110
Sabrina Roussel, Lucia Carrera Fragoso, Philippe Grenier, Quentin Bruxelles, Valérie Chénard, Sébastien Marcoux, Karine Greffard, Sébastien Fortin, Luc Vallières, Nicolas Bertrand
{"title":"Glycerol-Based Polymer to Improve the Cellular Uptake of Liposomes.","authors":"Sabrina Roussel, Lucia Carrera Fragoso, Philippe Grenier, Quentin Bruxelles, Valérie Chénard, Sébastien Marcoux, Karine Greffard, Sébastien Fortin, Luc Vallières, Nicolas Bertrand","doi":"10.1021/acs.biomac.4c01110","DOIUrl":null,"url":null,"abstract":"<p><p>Nanomedicines modify the pharmacology of pharmaceutical ingredients, but most require cell internalization to deliver their payloads. Hence, modifying the surface properties of nanomedicines can improve their interactions with cells and modulate their pharmacology. Herein, we devised a polymer that increases how nanomedicines are internalized by cells. The alkylated poly(monoglycerol acrylate) (PMGA) polymer was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization with a terminal double 18-carbon moiety that allows its anchoring on the surface of liposomes. PMGA-decorated liposomes are internalized more efficiently in immune cells, compared to formulations without the polymer. Using inhibitors of internalization pathways, we established that PMGA promotes cell entry by the fast endophilin-mediated endocytosis (FEME). In comparison, noncoated control liposomes were mostly internalized by clathrin-mediated endocytosis. This work highlights the potential of PMGA to increase the internalization of nanomedicines by immune cells, and target a novel internalization pathway.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 5","pages":"2811-2824"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077401/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01110","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanomedicines modify the pharmacology of pharmaceutical ingredients, but most require cell internalization to deliver their payloads. Hence, modifying the surface properties of nanomedicines can improve their interactions with cells and modulate their pharmacology. Herein, we devised a polymer that increases how nanomedicines are internalized by cells. The alkylated poly(monoglycerol acrylate) (PMGA) polymer was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization with a terminal double 18-carbon moiety that allows its anchoring on the surface of liposomes. PMGA-decorated liposomes are internalized more efficiently in immune cells, compared to formulations without the polymer. Using inhibitors of internalization pathways, we established that PMGA promotes cell entry by the fast endophilin-mediated endocytosis (FEME). In comparison, noncoated control liposomes were mostly internalized by clathrin-mediated endocytosis. This work highlights the potential of PMGA to increase the internalization of nanomedicines by immune cells, and target a novel internalization pathway.

甘油基聚合物提高脂质体的细胞摄取。
纳米药物改变药物成分的药理学,但大多数需要细胞内化来传递其有效载荷。因此,改变纳米药物的表面特性可以改善其与细胞的相互作用并调节其药理学。在这里,我们设计了一种聚合物,可以增加纳米药物被细胞内化的方式。采用可逆加成-破碎-链转移(RAFT)聚合法制备了烷基化聚丙烯酸单甘油酯(PMGA)聚合物,其末端双18碳基团可使其锚定在脂质体表面。与没有聚合物的配方相比,pmga修饰脂质体在免疫细胞中更有效地内化。利用内化途径的抑制剂,我们确定PMGA通过快速内啡肽介导的内吞作用(FEME)促进细胞进入。相比之下,未包被的对照脂质体主要通过网格蛋白介导的内吞作用内化。这项工作强调了PMGA增加免疫细胞对纳米药物内化的潜力,并针对一种新的内化途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信