Sabrina Roussel, Lucia Carrera Fragoso, Philippe Grenier, Quentin Bruxelles, Valérie Chénard, Sébastien Marcoux, Karine Greffard, Sébastien Fortin, Luc Vallières, Nicolas Bertrand
{"title":"Glycerol-Based Polymer to Improve the Cellular Uptake of Liposomes.","authors":"Sabrina Roussel, Lucia Carrera Fragoso, Philippe Grenier, Quentin Bruxelles, Valérie Chénard, Sébastien Marcoux, Karine Greffard, Sébastien Fortin, Luc Vallières, Nicolas Bertrand","doi":"10.1021/acs.biomac.4c01110","DOIUrl":null,"url":null,"abstract":"<p><p>Nanomedicines modify the pharmacology of pharmaceutical ingredients, but most require cell internalization to deliver their payloads. Hence, modifying the surface properties of nanomedicines can improve their interactions with cells and modulate their pharmacology. Herein, we devised a polymer that increases how nanomedicines are internalized by cells. The alkylated poly(monoglycerol acrylate) (PMGA) polymer was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization with a terminal double 18-carbon moiety that allows its anchoring on the surface of liposomes. PMGA-decorated liposomes are internalized more efficiently in immune cells, compared to formulations without the polymer. Using inhibitors of internalization pathways, we established that PMGA promotes cell entry by the fast endophilin-mediated endocytosis (FEME). In comparison, noncoated control liposomes were mostly internalized by clathrin-mediated endocytosis. This work highlights the potential of PMGA to increase the internalization of nanomedicines by immune cells, and target a novel internalization pathway.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 5","pages":"2811-2824"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077401/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01110","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanomedicines modify the pharmacology of pharmaceutical ingredients, but most require cell internalization to deliver their payloads. Hence, modifying the surface properties of nanomedicines can improve their interactions with cells and modulate their pharmacology. Herein, we devised a polymer that increases how nanomedicines are internalized by cells. The alkylated poly(monoglycerol acrylate) (PMGA) polymer was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization with a terminal double 18-carbon moiety that allows its anchoring on the surface of liposomes. PMGA-decorated liposomes are internalized more efficiently in immune cells, compared to formulations without the polymer. Using inhibitors of internalization pathways, we established that PMGA promotes cell entry by the fast endophilin-mediated endocytosis (FEME). In comparison, noncoated control liposomes were mostly internalized by clathrin-mediated endocytosis. This work highlights the potential of PMGA to increase the internalization of nanomedicines by immune cells, and target a novel internalization pathway.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.