Lactobacillus taiwanensis BCRC17755 alleviates motor dysfunction and dopaminergic neuronal loss in mouse models of Parkinson's disease.

IF 3 4区 医学 Q2 MICROBIOLOGY
Y Choi, J G Choi, E Huh, H Eo, Y-J Shin, M G Park, D-H Kim, M S Oh
{"title":"Lactobacillus taiwanensis BCRC17755 alleviates motor dysfunction and dopaminergic neuronal loss in mouse models of Parkinson's disease.","authors":"Y Choi, J G Choi, E Huh, H Eo, Y-J Shin, M G Park, D-H Kim, M S Oh","doi":"10.1163/18762891-bja00066","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a complex progressive neurodegenerative disease characterized by both motor and nonmotor symptoms such as constipation and dyspepsia. Recently, growing evidence has suggested that a specific gut microbiome is associated with the pathophysiology of PD through the microbiota-gut-brain axis. We previously discovered that Proteus mirabilis induced motor impairment and brain dopaminergic neurodegeneration in normal mice. In this context, exploring beneficial microbe would be reasonable strategy to treat PD fundamentally. With that the current study aimed to evaluate whether Lactobacillus taiwanensis BCRC17755 (BCRC17755) could ameliorate PD pathologies induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and P. mirabilis in mice. To demonstrate this, we measured motor function by performing pole test and the rotarod test and conducted histological analysis to assess the changes of factors in both brain and the gut. As a result, BCRC17755 decreased faecal abundance of P. mirabilis, which was higher in both the MPTP and P. mirabilis-treated mice. Additionally, BCRC17755 improved the motor deficits and alleviated damage to nigrostriatal dopaminergic neurons observed in both MPTP and P. mirabilis-induced PD mice. Furthermore, BCRC17755 mitigated microglial hyperactivation triggered by MPTP and P. mirabilis in the substantia nigra pars compacta and striatum of mice. Similarly, the release of inflammatory cytokines, including interleukin-1 beta and tumor necrosis factor alpha, was suppressed following the administration of BCRC17755 in the colon. Taken together, all the results suggest that BCRC17755 is a beneficial microbe for the treatment of PD by inhibiting the P. mirabilis growth.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"1-11"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00066","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease (PD) is a complex progressive neurodegenerative disease characterized by both motor and nonmotor symptoms such as constipation and dyspepsia. Recently, growing evidence has suggested that a specific gut microbiome is associated with the pathophysiology of PD through the microbiota-gut-brain axis. We previously discovered that Proteus mirabilis induced motor impairment and brain dopaminergic neurodegeneration in normal mice. In this context, exploring beneficial microbe would be reasonable strategy to treat PD fundamentally. With that the current study aimed to evaluate whether Lactobacillus taiwanensis BCRC17755 (BCRC17755) could ameliorate PD pathologies induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and P. mirabilis in mice. To demonstrate this, we measured motor function by performing pole test and the rotarod test and conducted histological analysis to assess the changes of factors in both brain and the gut. As a result, BCRC17755 decreased faecal abundance of P. mirabilis, which was higher in both the MPTP and P. mirabilis-treated mice. Additionally, BCRC17755 improved the motor deficits and alleviated damage to nigrostriatal dopaminergic neurons observed in both MPTP and P. mirabilis-induced PD mice. Furthermore, BCRC17755 mitigated microglial hyperactivation triggered by MPTP and P. mirabilis in the substantia nigra pars compacta and striatum of mice. Similarly, the release of inflammatory cytokines, including interleukin-1 beta and tumor necrosis factor alpha, was suppressed following the administration of BCRC17755 in the colon. Taken together, all the results suggest that BCRC17755 is a beneficial microbe for the treatment of PD by inhibiting the P. mirabilis growth.

台湾乳杆菌BCRC17755减轻帕金森病小鼠模型的运动功能障碍和多巴胺能神经元损失。
帕金森病(PD)是一种复杂的进行性神经退行性疾病,以运动和非运动症状为特征,如便秘和消化不良。最近,越来越多的证据表明,特定的肠道微生物组通过微生物-肠-脑轴与PD的病理生理相关。我们之前发现变形杆菌会引起正常小鼠的运动损伤和脑多巴胺能神经变性。在此背景下,探索有益微生物将是从根本上治疗PD的合理策略。因此,本研究旨在评估台湾乳杆菌BCRC17755 (BCRC17755)是否能改善1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)和P. mirabilis诱导的小鼠PD病理。为了证明这一点,我们通过极试验和旋转棒试验测量了运动功能,并进行了组织学分析,以评估大脑和肠道因素的变化。结果,BCRC17755降低了粪便中神奇假单胞菌的丰度,在MPTP和神奇假单胞菌处理的小鼠中都较高。此外,在MPTP和P. mirabili诱导的PD小鼠中观察到,BCRC17755改善了运动缺陷,减轻了黑质纹状体多巴胺能神经元的损伤。此外,BCRC17755还能减轻MPTP和P. mirabilis在小鼠黑质致密部和纹状体中引发的小胶质细胞过度活化。同样,在结肠中给予BCRC17755后,炎性细胞因子(包括白细胞介素-1 β和肿瘤坏死因子α)的释放被抑制。综上所述,BCRC17755是一种通过抑制P. mirabilis生长而治疗PD的有益微生物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Beneficial microbes
Beneficial microbes MICROBIOLOGY-NUTRITION & DIETETICS
CiteScore
7.90
自引率
1.90%
发文量
53
审稿时长
>12 weeks
期刊介绍: Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators. The journal will have five major sections: * Food, nutrition and health * Animal nutrition * Processing and application * Regulatory & safety aspects * Medical & health applications In these sections, topics dealt with by Beneficial Microbes include: * Worldwide safety and regulatory issues * Human and animal nutrition and health effects * Latest discoveries in mechanistic studies and screening methods to unravel mode of action * Host physiology related to allergy, inflammation, obesity, etc. * Trends in application of (meta)genomics, proteomics and metabolomics * New developments in how processing optimizes pro- & prebiotics for application * Bacterial physiology related to health benefits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信