{"title":"Protective effects of melatonin on cadmium subcellular distribution, biochemical, and anatomical alterations in Malva parviflora roots.","authors":"Narges Rahnamaei Yahyaabadi, Parzhak Zoufan, Fatemeh Nasernakhaei","doi":"10.1007/s10534-025-00691-9","DOIUrl":null,"url":null,"abstract":"<p><p>Plants use various mechanisms to cope with cadmium (Cd) stress. Melatonin's impact on the root response to Cd stress, which is the first organ to detect its presence, has been less studied. This study aims to investigate the effects of melatonin pretreatment on the root strategies of Malva parviflora in response to Cd stress, focusing on the mechanisms of heavy metal tolerance. The plants, 42 days post-germination, were subjected to a 48-h pretreatment with 50 μM melatonin in a complete nutrient solution under controlled growth conditions. Following pretreatment, plants were exposed to a nutrient solution containing 50 μM Cd for 8 days. Comparative analyses were conducted on root length, weight, anatomical features, Cd content, Cd subcellular distribution, nutrient absorption, glutathione, and lignin. Melatonin pretreatment significantly enhanced root length and weight under Cd stress. It also increased the xylem and phloem area in the roots and promoted the absorption and translocation of essential nutrients such as Fe, Zn, Ca, and Mg to the shoots. Additionally, there was a marked increase in glutathione content and Cd proportion in the cell wall and organelle fractions in melatonin-pretreated roots. Notably, melatonin reduced overall plant Cd content and its translocation from roots to shoots, while decreasing root lignin content. This study demonstrates that melatonin plays an important role in managing Cd toxicity by improving morphological, anatomical, and biochemical characteristics of roots under Cd stress. The findings suggest that melatonin pretreatment can effectively alter Cd subcellular distribution, thereby mitigating its harmful effects in plants.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-025-00691-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants use various mechanisms to cope with cadmium (Cd) stress. Melatonin's impact on the root response to Cd stress, which is the first organ to detect its presence, has been less studied. This study aims to investigate the effects of melatonin pretreatment on the root strategies of Malva parviflora in response to Cd stress, focusing on the mechanisms of heavy metal tolerance. The plants, 42 days post-germination, were subjected to a 48-h pretreatment with 50 μM melatonin in a complete nutrient solution under controlled growth conditions. Following pretreatment, plants were exposed to a nutrient solution containing 50 μM Cd for 8 days. Comparative analyses were conducted on root length, weight, anatomical features, Cd content, Cd subcellular distribution, nutrient absorption, glutathione, and lignin. Melatonin pretreatment significantly enhanced root length and weight under Cd stress. It also increased the xylem and phloem area in the roots and promoted the absorption and translocation of essential nutrients such as Fe, Zn, Ca, and Mg to the shoots. Additionally, there was a marked increase in glutathione content and Cd proportion in the cell wall and organelle fractions in melatonin-pretreated roots. Notably, melatonin reduced overall plant Cd content and its translocation from roots to shoots, while decreasing root lignin content. This study demonstrates that melatonin plays an important role in managing Cd toxicity by improving morphological, anatomical, and biochemical characteristics of roots under Cd stress. The findings suggest that melatonin pretreatment can effectively alter Cd subcellular distribution, thereby mitigating its harmful effects in plants.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.