Protective effects of melatonin on cadmium subcellular distribution, biochemical, and anatomical alterations in Malva parviflora roots.

IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Narges Rahnamaei Yahyaabadi, Parzhak Zoufan, Fatemeh Nasernakhaei
{"title":"Protective effects of melatonin on cadmium subcellular distribution, biochemical, and anatomical alterations in Malva parviflora roots.","authors":"Narges Rahnamaei Yahyaabadi, Parzhak Zoufan, Fatemeh Nasernakhaei","doi":"10.1007/s10534-025-00691-9","DOIUrl":null,"url":null,"abstract":"<p><p>Plants use various mechanisms to cope with cadmium (Cd) stress. Melatonin's impact on the root response to Cd stress, which is the first organ to detect its presence, has been less studied. This study aims to investigate the effects of melatonin pretreatment on the root strategies of Malva parviflora in response to Cd stress, focusing on the mechanisms of heavy metal tolerance. The plants, 42 days post-germination, were subjected to a 48-h pretreatment with 50 μM melatonin in a complete nutrient solution under controlled growth conditions. Following pretreatment, plants were exposed to a nutrient solution containing 50 μM Cd for 8 days. Comparative analyses were conducted on root length, weight, anatomical features, Cd content, Cd subcellular distribution, nutrient absorption, glutathione, and lignin. Melatonin pretreatment significantly enhanced root length and weight under Cd stress. It also increased the xylem and phloem area in the roots and promoted the absorption and translocation of essential nutrients such as Fe, Zn, Ca, and Mg to the shoots. Additionally, there was a marked increase in glutathione content and Cd proportion in the cell wall and organelle fractions in melatonin-pretreated roots. Notably, melatonin reduced overall plant Cd content and its translocation from roots to shoots, while decreasing root lignin content. This study demonstrates that melatonin plays an important role in managing Cd toxicity by improving morphological, anatomical, and biochemical characteristics of roots under Cd stress. The findings suggest that melatonin pretreatment can effectively alter Cd subcellular distribution, thereby mitigating its harmful effects in plants.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-025-00691-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plants use various mechanisms to cope with cadmium (Cd) stress. Melatonin's impact on the root response to Cd stress, which is the first organ to detect its presence, has been less studied. This study aims to investigate the effects of melatonin pretreatment on the root strategies of Malva parviflora in response to Cd stress, focusing on the mechanisms of heavy metal tolerance. The plants, 42 days post-germination, were subjected to a 48-h pretreatment with 50 μM melatonin in a complete nutrient solution under controlled growth conditions. Following pretreatment, plants were exposed to a nutrient solution containing 50 μM Cd for 8 days. Comparative analyses were conducted on root length, weight, anatomical features, Cd content, Cd subcellular distribution, nutrient absorption, glutathione, and lignin. Melatonin pretreatment significantly enhanced root length and weight under Cd stress. It also increased the xylem and phloem area in the roots and promoted the absorption and translocation of essential nutrients such as Fe, Zn, Ca, and Mg to the shoots. Additionally, there was a marked increase in glutathione content and Cd proportion in the cell wall and organelle fractions in melatonin-pretreated roots. Notably, melatonin reduced overall plant Cd content and its translocation from roots to shoots, while decreasing root lignin content. This study demonstrates that melatonin plays an important role in managing Cd toxicity by improving morphological, anatomical, and biochemical characteristics of roots under Cd stress. The findings suggest that melatonin pretreatment can effectively alter Cd subcellular distribution, thereby mitigating its harmful effects in plants.

褪黑素对小檗根部镉亚细胞分布、生化和解剖改变的保护作用。
植物利用各种机制来应对镉胁迫。褪黑素对Cd胁迫的根反应的影响是第一个检测到其存在的器官,但研究较少。本研究旨在探讨褪黑素预处理对小花Malva parviflora响应Cd胁迫的根系策略的影响,重点探讨其重金属耐受机制。在控制生长条件下,将发芽后42 d的植株置于50 μM褪黑素的完全营养液中预处理48 h。预处理后,将植物暴露于含有50 μM Cd的营养液中8天。比较分析了根长、重量、解剖特征、Cd含量、Cd亚细胞分布、养分吸收、谷胱甘肽和木质素。褪黑素处理显著提高了Cd胁迫下的根长和根重。增加了根的木质部和韧皮部面积,促进了铁、锌、钙、镁等必需营养物质向茎部的吸收和转运。褪黑激素预处理后的根细胞壁和细胞器中谷胱甘肽含量和Cd比例均显著升高。值得注意的是,褪黑素降低了植物整体Cd含量及其从根到芽的转运,同时降低了根木质素含量。本研究表明,褪黑素通过改善Cd胁迫下根系的形态、解剖和生化特征,在控制Cd毒性中发挥重要作用。研究结果表明,褪黑素预处理可以有效改变Cd亚细胞分布,从而减轻其对植物的有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometals
Biometals 生物-生化与分子生物学
CiteScore
5.90
自引率
8.60%
发文量
111
审稿时长
3 months
期刊介绍: BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of: - metal ions - metal chelates, - siderophores, - metal-containing proteins - biominerals in all biosystems. - BioMetals rapidly publishes original articles and reviews. BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信