Sang R Lee, Na Rim Kim, Moeka Mukae, Young Suk Won, Eui-Ju Hong
{"title":"Sex hormone-binding globulin dampens growth and metastasis of breast cancer in an estrogen-independent manner.","authors":"Sang R Lee, Na Rim Kim, Moeka Mukae, Young Suk Won, Eui-Ju Hong","doi":"10.1152/ajpcell.00747.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Early studies have shown that sex hormone-binding globulin (SHBG) suppresses breast cancer by decreasing estrogen activity. However, the sex hormone-independent role of SHBG in breast cancer has received limited attention. Building on our previous research linking SHBG with tumor-associated macrophage (TYRO3, AXL, and MerTK) receptors, we aimed to explore SHBG's sex hormone-independent involvement in breast cancer progression. Analysis of public datasets and tumor slides from patients with breast cancer revealed that invasive breast cancer was associated with a significant decrease in SHBG, and lower SHBG levels correlated with poor cancer prognosis. In the polyomavirus middle T antigen overexpression mouse model (MMTV-PyMT), SHBG-Tg mice exhibited extended survival both under naïve and ovariectomized conditions. Although SHBG-Tg tumors had an estrogenic environment, their growth was suppressed, which correlated with reduced AXL levels. SHBG plasma treatment inhibited proliferation, tumorsphere growth, and invasion in MDA-MB-231 cells, accompanied by a decrease in AXL levels. In subcutaneous allograft models, SHBG-Tg mice showed reduced tumor growth and metastasis, and intraperitoneal injection of SHBG plasma significantly delayed tumor progression in PyMT mice compared with WT plasma. In summary, our study highlights SHBG's inhibitory role in breast cancer growth and metastasis, which may be particularly relevant for estrogen-independent patients with triple-negative breast cancer.<b>NEW & NOTEWORTHY</b> Our study is the first in vivo experiment using polyomavirus middle T antigen-sex hormone-binding globulin (PyMT-SHBG) mouse model to assess the physiological role of SHBG in breast cancer development. We show that SHBG presence in PyMT model restrains breast cancer development and progression in sex hormone-independent manner.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":"328 5","pages":"C1685-C1698"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00747.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Early studies have shown that sex hormone-binding globulin (SHBG) suppresses breast cancer by decreasing estrogen activity. However, the sex hormone-independent role of SHBG in breast cancer has received limited attention. Building on our previous research linking SHBG with tumor-associated macrophage (TYRO3, AXL, and MerTK) receptors, we aimed to explore SHBG's sex hormone-independent involvement in breast cancer progression. Analysis of public datasets and tumor slides from patients with breast cancer revealed that invasive breast cancer was associated with a significant decrease in SHBG, and lower SHBG levels correlated with poor cancer prognosis. In the polyomavirus middle T antigen overexpression mouse model (MMTV-PyMT), SHBG-Tg mice exhibited extended survival both under naïve and ovariectomized conditions. Although SHBG-Tg tumors had an estrogenic environment, their growth was suppressed, which correlated with reduced AXL levels. SHBG plasma treatment inhibited proliferation, tumorsphere growth, and invasion in MDA-MB-231 cells, accompanied by a decrease in AXL levels. In subcutaneous allograft models, SHBG-Tg mice showed reduced tumor growth and metastasis, and intraperitoneal injection of SHBG plasma significantly delayed tumor progression in PyMT mice compared with WT plasma. In summary, our study highlights SHBG's inhibitory role in breast cancer growth and metastasis, which may be particularly relevant for estrogen-independent patients with triple-negative breast cancer.NEW & NOTEWORTHY Our study is the first in vivo experiment using polyomavirus middle T antigen-sex hormone-binding globulin (PyMT-SHBG) mouse model to assess the physiological role of SHBG in breast cancer development. We show that SHBG presence in PyMT model restrains breast cancer development and progression in sex hormone-independent manner.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.