{"title":"Oxygen dynamics and delivery strategies to enhance beta cell replacement therapy.","authors":"Kuang-Ming Shang, Tomoharu Suzuki, Hiroyuki Kato, Taro Toyoda, Yu-Chong Tai, Hirotake Komatsu","doi":"10.1152/ajpcell.00984.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Beta cell replacement therapy via pancreatic islet transplantation offers a promising treatment for type 1 diabetes as an alternative to insulin injections. However, posttransplantation oxygenation remains a critical challenge; isolated islets from donors lose vascularity and rely on slow oxygen diffusion for survival until revascularization occurs in the host tissue. This often results in significant hypoxia-induced acute graft loss. Overcoming the oxygenation barrier is crucial for advancing islet transplantation. This review is structured in three sections: the first examines oxygen dynamics in islet transplantation, focusing on factors affecting oxygen supply, including vascularity. It highlights oxygen dynamics specific to both transplant sites and islet grafts, with particular attention to extrahepatic sites such as subcutaneous tissue. The second section explores current oxygen delivery strategies, categorized into two main approaches: augmenting oxygen supply and enhancing effective oxygen solubility. The final section addresses key challenges, such as the lack of a clearly defined oxygen threshold for islet survival and the limited precision in measuring oxygen levels within small islet constructs. Recent advancements addressing these challenges are introduced. By deepening the understanding of oxygen dynamics and identifying current obstacles, this review aims to guide the development of innovative strategies for future research and clinical applications. These advancements are anticipated to enhance transplantation outcomes and bring us closer to a cure for type 1 diabetes.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":"328 5","pages":"C1667-C1684"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00984.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Beta cell replacement therapy via pancreatic islet transplantation offers a promising treatment for type 1 diabetes as an alternative to insulin injections. However, posttransplantation oxygenation remains a critical challenge; isolated islets from donors lose vascularity and rely on slow oxygen diffusion for survival until revascularization occurs in the host tissue. This often results in significant hypoxia-induced acute graft loss. Overcoming the oxygenation barrier is crucial for advancing islet transplantation. This review is structured in three sections: the first examines oxygen dynamics in islet transplantation, focusing on factors affecting oxygen supply, including vascularity. It highlights oxygen dynamics specific to both transplant sites and islet grafts, with particular attention to extrahepatic sites such as subcutaneous tissue. The second section explores current oxygen delivery strategies, categorized into two main approaches: augmenting oxygen supply and enhancing effective oxygen solubility. The final section addresses key challenges, such as the lack of a clearly defined oxygen threshold for islet survival and the limited precision in measuring oxygen levels within small islet constructs. Recent advancements addressing these challenges are introduced. By deepening the understanding of oxygen dynamics and identifying current obstacles, this review aims to guide the development of innovative strategies for future research and clinical applications. These advancements are anticipated to enhance transplantation outcomes and bring us closer to a cure for type 1 diabetes.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.