{"title":"Exploring the interplay between oxidative stress and autophagy in asthma: Pathophysiology and therapeutic potential.","authors":"Ying Liu, Tongtong Wang, Yu-Ang Dong, Jun Zhang","doi":"10.15586/aei.v53i3.1217","DOIUrl":null,"url":null,"abstract":"<p><p>Asthma is a chronic respiratory disease, characterized by airway inflammation, hyperresponsiveness, and remodeling. Oxidative stress and autophagy play pivotal roles in asthma pathogenesis. Excessive production of reactive oxygen species (ROS) worsens airway damage and inflammation, and impaired antioxidant defenses in patients with asthma further increase ROS production, leading to tissue damage. Environmental factors, such as allergens and air pollution, and inflammatory cells, such as macrophages and eosinophils, contribute to elevated ROS levels, thereby intensifying the disease. Autophagy, a key mechanism for eliminating damaged organelles and maintaining cellular homeostasis, plays a dual role in asthma. While autophagy activation mitigates oxidative stress, dysregulated or excessive autophagy worsens airway remodeling and inflammation. This review examines the interplay between oxidative stress and autophagy in asthma and discusses emerging therapeutic approaches targeting autophagy to improve disease outcomes.</p>","PeriodicalId":7536,"journal":{"name":"Allergologia et immunopathologia","volume":"53 3","pages":"167-180"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Allergologia et immunopathologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15586/aei.v53i3.1217","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0
Abstract
Asthma is a chronic respiratory disease, characterized by airway inflammation, hyperresponsiveness, and remodeling. Oxidative stress and autophagy play pivotal roles in asthma pathogenesis. Excessive production of reactive oxygen species (ROS) worsens airway damage and inflammation, and impaired antioxidant defenses in patients with asthma further increase ROS production, leading to tissue damage. Environmental factors, such as allergens and air pollution, and inflammatory cells, such as macrophages and eosinophils, contribute to elevated ROS levels, thereby intensifying the disease. Autophagy, a key mechanism for eliminating damaged organelles and maintaining cellular homeostasis, plays a dual role in asthma. While autophagy activation mitigates oxidative stress, dysregulated or excessive autophagy worsens airway remodeling and inflammation. This review examines the interplay between oxidative stress and autophagy in asthma and discusses emerging therapeutic approaches targeting autophagy to improve disease outcomes.
期刊介绍:
Founded in 1972 by Professor A. Oehling, Allergologia et Immunopathologia is a forum for those working in the field of pediatric asthma, allergy and immunology. Manuscripts related to clinical, epidemiological and experimental allergy and immunopathology related to childhood will be considered for publication. Allergologia et Immunopathologia is the official journal of the Spanish Society of Pediatric Allergy and Clinical Immunology (SEICAP) and also of the Latin American Society of Immunodeficiencies (LASID). It has and independent international Editorial Committee which submits received papers for peer-reviewing by international experts. The journal accepts original and review articles from all over the world, together with consensus statements from the aforementioned societies. Occasionally, the opinion of an expert on a burning topic is published in the "Point of View" section. Letters to the Editor on previously published papers are welcomed. Allergologia et Immunopathologia publishes 6 issues per year and is included in the major databases such as Pubmed, Scopus, Web of Knowledge, etc.