Jeongae Kim, Yanming Zhang, Shweta Burgula, R Helen Zha, Yunfeng Shi
{"title":"Molecular Dynamics Simulation of Self-Assembly and Tensile Deformation of Silk-Mimetic Polymers.","authors":"Jeongae Kim, Yanming Zhang, Shweta Burgula, R Helen Zha, Yunfeng Shi","doi":"10.1021/acs.biomac.4c01623","DOIUrl":null,"url":null,"abstract":"<p><p>Silk is a natural biopolymer with outstanding mechanical properties due to its nanocomposite microstructure of crystalline β-sheets in an amorphous matrix. However, there remains a lack of understanding of the relationship between amino acid sequence, supramolecular structure formation, and mechanical properties. In this work, we developed a reactive coarse-grained molecular dynamics model to simulate the self-assembly, tensile deformation, and fracture of a segmented copolymer based on the repetitive core domain of spider dragline spidroins. We find that the β-sheet nanocrystal content is determined by the length ratio of β-sheet to non-β-sheet segments. We reveal that the chain length affects the chain-to-chain network connectivity between the nanocrystals. High nanocrystal content and high connectivity improve the strength and stiffness at the cost of extensibility. Toughness does not continue to increase past a threshold β-sheet-to-non-sheet segment ratio. Our findings provide important insights to guide the rational molecular design of silk-mimetic materials.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 5","pages":"2852-2867"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01623","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Silk is a natural biopolymer with outstanding mechanical properties due to its nanocomposite microstructure of crystalline β-sheets in an amorphous matrix. However, there remains a lack of understanding of the relationship between amino acid sequence, supramolecular structure formation, and mechanical properties. In this work, we developed a reactive coarse-grained molecular dynamics model to simulate the self-assembly, tensile deformation, and fracture of a segmented copolymer based on the repetitive core domain of spider dragline spidroins. We find that the β-sheet nanocrystal content is determined by the length ratio of β-sheet to non-β-sheet segments. We reveal that the chain length affects the chain-to-chain network connectivity between the nanocrystals. High nanocrystal content and high connectivity improve the strength and stiffness at the cost of extensibility. Toughness does not continue to increase past a threshold β-sheet-to-non-sheet segment ratio. Our findings provide important insights to guide the rational molecular design of silk-mimetic materials.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.