MiR-518b Promotes the Tumorigenesis of Hepatocellular Carcinoma by Targeting EGR1 to Regulate PI3K/AKT/mTOR Signaling Pathway.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xinyuan Wang, Juan Li, Jiao Nong, Xin Deng, Yiping Chen, Bing Han, Lin Zeng, Xiabing Huang
{"title":"MiR-518b Promotes the Tumorigenesis of Hepatocellular Carcinoma by Targeting EGR1 to Regulate PI3K/AKT/mTOR Signaling Pathway.","authors":"Xinyuan Wang, Juan Li, Jiao Nong, Xin Deng, Yiping Chen, Bing Han, Lin Zeng, Xiabing Huang","doi":"10.1007/s12013-025-01752-z","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is a prevalent malignancy originating from hepatocytes and is characterized by high invasiveness and fatality. Dysregulation of microRNAs (miRNAs) is frequently observed during HCC progression. This study aimed to investigate the role of miR-518b in HCC cell malignancy and tumor growth. MiR-518b expression in HCC cells was measured by RT-qPCR. The proliferative, migratory and invasive capabilities of Hep3B and SNU-387 were assessed by colony formation, wound healing and transwell assays, respectively. RNA immunoprecipitation and luciferase reporter assays were utilized to verify the binding between miR-518b and its target gene, early growth response factor 1 (EGR1). Results revealed that miR-518b was highly expressed while EGR1 was downregulated in HCC cells. Knockdown of miR-518b significantly repressed cell proliferation, migration and invasion. Moreover, miR-518b bound to 3'untranslated region of EGR1 and negatively regulated its expression in HCC cells. EGR1 knockdown counteracted the inhibitory impact of miR-518b inhibition on malignant cell behaviors. In addition, the silencing of EGR1 activated the PI3K/AKT/mTOR signaling in HCC cells, while miR-518b depletion had the opposite effect. Importantly, the suppressive impact of miR-518b on the pathway was rescued by EGR1 knockdown. In vivo experiments demonstrated that inhibition of miR-518b suppressed HCC tumor growth, reduced EGR1 and Ki67 (a proliferation marker) expression, and inactivated the PI3K/AKT/mTOR signaling. In conclusion, miR-518b promotes HCC tumorigenesis by targeting EGR1 and regulating the PI3K/AKT/mTOR signaling pathway.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01752-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatocellular carcinoma (HCC) is a prevalent malignancy originating from hepatocytes and is characterized by high invasiveness and fatality. Dysregulation of microRNAs (miRNAs) is frequently observed during HCC progression. This study aimed to investigate the role of miR-518b in HCC cell malignancy and tumor growth. MiR-518b expression in HCC cells was measured by RT-qPCR. The proliferative, migratory and invasive capabilities of Hep3B and SNU-387 were assessed by colony formation, wound healing and transwell assays, respectively. RNA immunoprecipitation and luciferase reporter assays were utilized to verify the binding between miR-518b and its target gene, early growth response factor 1 (EGR1). Results revealed that miR-518b was highly expressed while EGR1 was downregulated in HCC cells. Knockdown of miR-518b significantly repressed cell proliferation, migration and invasion. Moreover, miR-518b bound to 3'untranslated region of EGR1 and negatively regulated its expression in HCC cells. EGR1 knockdown counteracted the inhibitory impact of miR-518b inhibition on malignant cell behaviors. In addition, the silencing of EGR1 activated the PI3K/AKT/mTOR signaling in HCC cells, while miR-518b depletion had the opposite effect. Importantly, the suppressive impact of miR-518b on the pathway was rescued by EGR1 knockdown. In vivo experiments demonstrated that inhibition of miR-518b suppressed HCC tumor growth, reduced EGR1 and Ki67 (a proliferation marker) expression, and inactivated the PI3K/AKT/mTOR signaling. In conclusion, miR-518b promotes HCC tumorigenesis by targeting EGR1 and regulating the PI3K/AKT/mTOR signaling pathway.

MiR-518b通过靶向EGR1调控PI3K/AKT/mTOR信号通路促进肝癌的发生。
肝细胞癌(HCC)是一种起源于肝细胞的常见恶性肿瘤,具有高侵袭性和致死率。在HCC进展过程中经常观察到microrna (miRNAs)的失调。本研究旨在探讨miR-518b在HCC细胞恶性和肿瘤生长中的作用。RT-qPCR检测MiR-518b在HCC细胞中的表达。Hep3B和SNU-387的增殖、迁移和侵袭能力分别通过菌落形成、伤口愈合和transwell试验进行评估。采用RNA免疫沉淀法和荧光素酶报告基因法验证miR-518b与其靶基因早期生长反应因子1 (EGR1)的结合。结果显示,HCC细胞中miR-518b高表达,EGR1下调。敲低miR-518b可显著抑制细胞增殖、迁移和侵袭。此外,miR-518b结合到EGR1的3'非翻译区并负向调节其在HCC细胞中的表达。EGR1敲低抵消了miR-518b抑制对恶性细胞行为的抑制作用。此外,EGR1的沉默激活了HCC细胞中的PI3K/AKT/mTOR信号,而miR-518b的缺失则具有相反的效果。重要的是,miR-518b对该通路的抑制作用通过EGR1敲低得以恢复。体内实验表明,抑制miR-518b可抑制HCC肿瘤生长,降低EGR1和Ki67(一种增殖标志物)的表达,并使PI3K/AKT/mTOR信号失活。总之,miR-518b通过靶向EGR1和调节PI3K/AKT/mTOR信号通路促进HCC的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信