{"title":"Simply Engineered crRNA with CRISPR/Cas12a System Enables Wide-Scope Nucleic Acid Biomarker Analysis.","authors":"Shuang Zhao, Qiuting Zhang, Jiudi Sun, Shenghui Li, Sheng Wang, Dianming Zhou, Xiaoqun Gong","doi":"10.1021/acs.nanolett.5c01939","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR/Cas12a systems have emerged as versatile tools for molecular diagnostics, but directly detecting RNA and identifying specific DNA point mutations remain challenging. Herein, we report a simple engineering approach with a split site in the spacer sequence, enabling activation of CRISPR/Cas12a (LbCas12a) for <i>trans</i>-cleavage with similar efficiency to wild-type crRNA. The engineered crRNA facilitated RNA target recognition by replacing the 3'-end with RNA fragments, enhancing point mutation specificity for ssDNA targets. Based on this, we achieved amplification-free detection of microRNAs and DNA point mutations with high sensitivity and specificity. For clinical sample validation, we constructed reverse fluorescence-enhanced lateral flow test strips (rLFTS), which achieved femtomole-level detection. Moreover, the engineered crRNA-based CRISPR/Cas12a system also effectively recognized tumor cells via intracellular and in vivo imaging of miRNA-21. In conclusion, this engineered crRNA platform enhances CRISPR/Cas12a-based nucleic acid detection, promoting its wide application in molecular diagnostics and bioimaging.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"8431-8441"},"PeriodicalIF":9.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01939","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR/Cas12a systems have emerged as versatile tools for molecular diagnostics, but directly detecting RNA and identifying specific DNA point mutations remain challenging. Herein, we report a simple engineering approach with a split site in the spacer sequence, enabling activation of CRISPR/Cas12a (LbCas12a) for trans-cleavage with similar efficiency to wild-type crRNA. The engineered crRNA facilitated RNA target recognition by replacing the 3'-end with RNA fragments, enhancing point mutation specificity for ssDNA targets. Based on this, we achieved amplification-free detection of microRNAs and DNA point mutations with high sensitivity and specificity. For clinical sample validation, we constructed reverse fluorescence-enhanced lateral flow test strips (rLFTS), which achieved femtomole-level detection. Moreover, the engineered crRNA-based CRISPR/Cas12a system also effectively recognized tumor cells via intracellular and in vivo imaging of miRNA-21. In conclusion, this engineered crRNA platform enhances CRISPR/Cas12a-based nucleic acid detection, promoting its wide application in molecular diagnostics and bioimaging.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.